Experimental Relativity

Experimental Relativity

General Relativity and Quantum Mechanics are known to be fundamentally incompatible. One approach to aid in the construction of a complete unified model is to allow new observations to point theory-building in the right direction. Professor Yunes' research group aids in this search by developing new tests of General Relativity when gravity is highly dynamical and nonlinear, like for example when black holes merge. These tests can verify some of the foundational pillars of Einstein's theory, such as the principle of equivalence, parity and time-reversal invariance, the polarization content of gravitational waves, and the spin and mass of the graviton. Any observational sign of a violation of these foundational principles would be catastrophic for Einstein's theory, and may point us in the direction of a more complete theory. Professor Yunes' group studies, develops and implements both model-independent tests of Einstein's theory (for example through the parameterized post-Einsteinian framework), as well as model-specific tests aimed at constraining particularly interesting models.

In addition to tests of general relativity with gravitational waves, Professor Yunes also studies other experiments that could be used to put Einstein's theory to the test. These experiments include observations in the Solar System, such as observations of the Shapiro time delay and frame-dragging with spacecraft tracking, as well as observations with binary pulsars through radio timing. These tests are complementary to those that can be carried out with gravitational waves, and thus, they tend to constrain different sectors of a gravitational model.

Return to Professor Yunes' profile page