Home

News

  • Our Alumni

Three leaders in radiation oncology, including clinicians and researchers from Duke University, Massachusetts General Hospital and Cedars-Sinai Medical Center, have been named recipients of the American Society for Radiation Oncology (ASTRO) Gold Medal, the highest honor bestowed upon members of the world’s largest radiation oncology society. Benedick A. Fraass, PhD, FASTRO, Christopher G. Willett, MD, FASTRO, and Anthony L. Zietman, MD, FASTRO, will be recognized at an awards ceremony during ASTRO’s 58th Annual Meeting, to be held September 25-28, 2016, in Boston. Fraass is an alumnus of Physics Illinois (MS 1975, PhD 1980) and a former student of Professor Ralph Simmons.

  • Accolades
  • High Energy Physics

Aida El-Khadra, a professor of physics specializing in high-energy theory at the University of Illinois at Urbana-Champaign, is one of four scientists nationwide recently appointed Fermilab Distinguished Scholars.

Fermilab Distinguished Scholars are rotating multi-year appointments for U.S. particle theorists in the Fermilab Theoretical Physics Department. The Fermilab Director appoints Scholars for a term of two years, with the possibility of a one-year extension by mutual agreement. Fermilab Distinguished Scholars are expected to spend at least one month total per year in residence at Fermilab. During the term of their appointment, Scholars have a Fermilab affiliation and the same research opportunities and support infrastructure as Fermilab scientists. Scholars are encouraged to propose and/or participate in thematic programs organized with members of Fermilab's Theoretical Physics and Astrophysics Departments.

  • Research
  • Nuclear Physics

Tracking particles created in subatomic smashups takes precision. So before the components that make up detectors at colliders like the Relativistic Heavy Ion Collider (RHIC) get the chance to see a single collision, physicists want to be sure they are up to the task. A group of physicists and students hoping to one day build a new detector at RHIC—a DOE Office of Science User Facility for nuclear physics research at the U.S. Department of Energy’s Brookhaven National Laboratory—recently spent time at DOE’s Fermi National Accelerator Laboratory putting key particle-tracking components to the test.

  • Research

In less than the blink of an eye Einstein’s theory of relativity is on its way to becoming just another science fact. Scientists observed gravitational waves—ripples in the fabric of spacetime for the second time—and researchers at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign were part of the Ligo collaboration identifying the event.

  • Research
  • Nuclear Physics

Scientists at Brookhaven National Laboratory will work to understand the emergent properties of the superhot primordial soup called "quark-gluon plasma" (QGP), generated at the Relativistic Heavy Ion Collider (RHIC). QGP's perfect fluidity and other collective properties are a mystery.To address that mystery, a group of nuclear physicists has formed a new scientific collaboration that will expand on discoveries made by RHIC’s existing STAR and PHENIX research groups. This new collaboration, made up of veterans of the field and researchers just beginning their careers, has precise ideas about the measurements its members would like to make—and hopes of upgrading the PHENIX detector to make those measurements at RHIC.

The future of Physics

Support our commitment to train the next generation of researchers and teachers.

Ask
the
Van

I have two questions.... How do I know the pressure under one meter of water if there was no air? If I was at the bottom of a giant ice cream cone full of water would there be more pressure than if I was at the bottom of a giant test tube thats just as high? Does it matter if theres more water on top or is it just about how deep it is? Im just wondering about water not air.