Ha Awarded 2011 Ho-Am Prize in Science

Celia Elliott
6/3/2011

UPDATE 6/03/2011—At a gala celebration in Seoul yesterday, Professor of Physics and Howard Hughes Medical Investigator Taekjip Ha was presented the 2011 Ho-Am Prize in Science. In attendance were the current prime minister of South Korea, Hwang-sik Kim and chairman of Samsung, Kun-hee Lee. The other laureates were Thomas H. Lee, Stanford University (Engineering Prize), Augustine M.K. Choi, Harvard Medical School (Medicine), Kyung Wha Chung, violinist (The Arts), and the Korea Legal Aid Center for Family Relations (Community Service).  

4/08/2011—Professor of Physics and Howard Hughes Medical Investigator Taekjip Ha has been awarded the 2011 Ho-Am Prize in Science by the Ho-Am Foundation of Korea. The Prize was established by Kun-hee Lee, chairman of Samsung, in 1990 to honor the vision of "Ho-Am" Byung-Chull Lee, the founder of Samsung, and to carry forward his commitment to promote activities and people that contribute to the public well-being. The Ho-Am Prizes are widely regarded as the Korean equivalent of the Nobel Prizes.

Ha was recognized for his pioneering application of fluorescence resonance energy transfer techniques to reveal the behavior and physical characteristics of single biomolecules. By combining sophisticated nanoscale imaging methods with state-of-the-art molecule manipulation techniques, Ha and his group are able to control and visualize the movements of single biomolecules. They have observed helicases unzip DNA, enzymes repair and recombine DNA, and ribozymes fold and unfold—one molecule at a time.

In his most recent work, Ha has used single-molecule measurements to elucidate protein-DNA interactions and enzyme dynamics. He has developed novel optical techniques, fluid-handling systems, and surface preparations, as well as novel hybrid microscopes that combine spectroscopy, microscopy, and optical and magnetic trapping techniques.

Ha has established a very large and successful research group at Illinois, where he has aggressively pursued collaborations both within Physics and across the campus. In addition to Physics, Ha holds appointments as professor in the Center for Biophysics and Computational Biology and as a faculty member of the precision proteomics research theme in the Institute for Genomic Biology. He is an affiliate of the Beckman Institute, the Department of Medical Biochemistry, College of Medicine, and the Department of Chemistry at Illinois.

In 2008, with Klaus Schulten, Ha led the team that obtained National Science Foundation funding for a new “Physics Frontiers Centers” at the University of Illinois. The Center for the Physics of Living Cells (CPLC), of which Ha is co-director, is one of only nine such NSF centers in the United States, and one of only two devoted to biological physics.

Ha has received the Bárány Award of the Biophysical Society (2007), an Alfred P. Sloan Foundation Fellowship (2003), a Cottrell Scholar Award (Research Corporation, 2003), the Young Fluorescence Investigator Award of the Biophysical Society (2002), and a Searle Scholar Award (2001). He was named a University Scholar at the University of Illinois in 2009. He is a fellow of the American Physical Society.

Recent News

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

  • Outreach

The most intriguing and relevant science happens at the highest levels of scientific pursuit-at major research universities and laboratories, far above and beyond typical high-school science curriculum. But this summer, 12 rising high school sophomores, juniors, and seniors-eight from Centennial and four from Central High Schools, both in Champaign-had the rare opportunity to partake in cutting-edge scientific research at a leading research institution.

The six-week summer-research Young Scholars Program (YSP) at the University of Illinois at Urbana-Champaign was initiated by members of the Nuclear Physics Laboratory (NPL) group, who soon joined forces with other faculty members in the Department of Physics and with faculty members of the POETS Engineering Research Center.

Imagine planting a single seed and, with great precision, being able to predict the exact height of the tree that grows from it. Now imagine traveling to the future and snapping photographic proof that you were right.

If you think of the seed as the early universe, and the tree as the universe the way it looks now, you have an idea of what the Dark Energy Survey (DES) collaboration has just done. In a presentation today at the American Physical Society Division of Particles and Fields meeting at the U.S. Department of Energy’s (DOE) Fermi National Accelerator Laboratory, DES scientists will unveil the most accurate measurement ever made of the present large-scale structure of the universe.

These measurements of the amount and “clumpiness” (or distribution) of dark matter in the present-day cosmos were made with a precision that, for the first time, rivals that of inferences from the early universe by the European Space Agency’s orbiting Planck observatory. The new DES result (the tree, in the above metaphor) is close to “forecasts” made from the Planck measurements of the distant past (the seed), allowing scientists to understand more about the ways the universe has evolved over 14 billion years.

“This result is beyond exciting,” said Scott Dodelson of Fermilab, one of the lead scientists on this result. “For the first time, we’re able to see the current structure of the universe with the same clarity that we can see its infancy, and we can follow the threads from one to the other, confirming many predictions along the way.”

It took two years on a supercomputer to simulate 1.2 microseconds in the life of the HIV capsid, a protein cage that shuttles the HIV virus to the nucleus of a human cell. The 64-million-atom simulation offers new insights into how the virus senses its environment and completes its infective cycle.

The findings are reported in the journal Nature Communications.