Martinez Outschoorn and Yang selected for NSF CAREER Awards

Siv Schwink
3/1/2017 10:46 AM

Assistant Professors Verena Martinez Outschoorn and Liang Yang of the Department of Physics at the University of Illinois at Urbana-Champaign have each been selected for 2017 NSF CAREER Awards. The Faculty Early Career Development (CAREER) Award of the National Science Foundation is conferred annually in support of junior faculty who exemplify the role of teacher-scholars by integrating outstanding research with excellent education. Receipt of this honor also reflects great promise for a lifetime of leadership within recipients’ respective fields.

Assistant Professor Verena Martinez Outschoorn. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign.
Assistant Professor Verena Martinez Outschoorn. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign.
Martinez Outschoorn is a member of the ATLAS experiment at the Large Hadron Collider at CERN in Switzerland. She will use the 5-year grant to develop and implement new analytical tools to search for exotic Higgs boson decay modes, which ultimately could reveal new physics beyond the standard model (SM) and could shed light on the nature of dark matter. She and her group are also collaborating with ATLAS colleagues in the development of new electronics upgrades to the experiment that would allow for the effective triggering and recording of extremely rare and difficult-to-detect Higgs events.

Martinez Outschoorn is additionally developing an outreach program that enlists undergraduate and graduate student volunteers from Physics Illinois to share the excitement of physics with elementary and middle-school students, grades 4 through 8. The project brings concepts of particle physics into school classrooms in an interactive way and provides opportunities for young students to interact with physicists at work, both locally and at CERN.

Martinez Outschoorn earned a bachelor’s degree in physics and math from Harvard University, graduating magna cum laude in 2005. She continued on at Harvard to earn her master’s (2008) and doctoral degrees (2011) in physics. Before joining the faculty at Physics Illinois in 2014, she worked as a Lederman postdoctoral fellow at Fermi National Laboratory, focusing on the CMS experiment at CERN.

Asstistant Professor Liang Yang. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign.
Asstistant Professor Liang Yang. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign.

Yang will use his CAREER Award to develop novel analysis techniques for investigations of neutrinos, ubiquitous yet mysterious particles. Yang is co-spokesperson of the Enriched Xenon Observatory (EXO-200) experiment, currently in its Phase-II data taking. By searching for neutrinoless double beta decay, an exotic nuclear process, the EXO-200 collaborators hope to shed light on fundamental properties of neutrinos, including whether neutrinos are Majorana particles, i.e., their own anti-particles. A Majorana neutrino coupled with charge-parity (CP) violation could generate physical mechanisms responsible for the matter- antimatter asymmetry in the Universe.

The search for neutrinoless double beta decay will also shed light on the neutrino mass generation mechanism and put limits on the absolute scale of neutrino mass. Yang’s group at the U. of I. led the upgrade of the EXO-200 front-end electronics system, enhancing the detector’s energy resolution. He and Prof. Michelle Dolinski at Drexel University are currently overseeing the 3-year Phase-II data taking.

Yang plans to offer several EXO-200-centered research projects for undergraduate and graduate students at the U. of I. He is additionally developing an educational program to strengthen science education at the middle-school level, working in tangent with the U. of I. College of Education. He plans to organize workshops for middle-school teachers that will offer advanced training in hands-on activities for physical-science teaching, in accordance with New Generation Science Standards. Yang will also work with undergraduate student volunteers to improve outreach programs to middle school students.

Yang received his bachelor's degree in physics from Yale University in 1999. He received his master's (2003) and doctoral degrees (2006) in physics from Harvard University. He worked as a research associate at SLAC National Accelerator Laboratory from 2007 to 2011. He joined the faculty at Physics Illinois in 2012.

These CAREER grants are supported by NSF’s Division of Physics.

Recent News

  • Accolades
  • Alumni News

Congratulations to Physics Illinois alumnus M. George Craford on being presented today with the IEEE Edison Medal of the Institute of Electrical and Electronics Engineers. The medal is awarded annually in recognition of a career of meritorious achievement in electrical science, electrical engineering, or the electrical arts. The citation reads, “for a lifetime of pioneering contributions to the development and commercialization of visible LED materials and devices.”

 

Craford is best known for his invention of the first yellow light emitting diode (LED). During his career, he developed and commercialized the technologies yielding the highest-brightness yellow, amber, and red LEDs as well as world-class blue LEDs. He is a pioneer whose contributions to his field are lasting.

  • Research

While heritable genetic mutations can alter phenotypic traits and enable populations to adapt to their environment, adaptation is frequently limited by trade-offs: a mutation advantageous to one trait might be detrimental to another.

Because of the interplay between the selection pressures present in complex environments and the trade-offs constraining phenotypes, predicting evolutionary dynamics is difficult.

Researchers at the University of Illinois at Urbana-Champaign have shown how evolutionary dynamics proceed when selection acts on two traits governed by a trade-off. The results move the life sciences a step closer to understanding the full complexity of evolution at the cellular level.

  • Research
  • Condensed Matter Physics

Since the discovery two decades ago of the unconventional topological superconductor Sr2RuO4, scientists have extensively investigated its properties at temperatures below its 1 K critical temperature (Tc), at which a phase transition from a metal to a superconducting state occurs. Now experiments done at the University of Illinois at Urbana-Champaign in the Madhavan and Abbamonte laboratories, in collaboration with researchers at six institutions in the U.S., Canada, United Kingdom, and Japan, have shed new light on the electronic properties of this material at temperatures 4 K above Tc. The team’s findings may elucidate yet-unresolved questions about Sr2RuO4’s emergent properties in the superconducting state.

  • Research
  • AMO/Quantum Physics

Using an atomic quantum simulator, scientists at the University of Illinois at Urbana-Champaign have achieved the first-ever direct observation of chiral currents in the model topological insulator, the 2-D integer quantum Hall system.

Topological Insulators (TIs) are arguably the most promising class of materials discovered in recent years, with many potential applications theorized. That’s because TIs exhibit a special quality: the surface of the material conducts electricity, while the bulk acts as an insulator. Over the last decade, scientists have extensively probed the microscopic properties of TIs, to better understand the fundamental physics that govern their peculiar behavior.

Atomic quantum simulation has proven an important tool for probing the characteristics of TIs, because it allows researchers greater control and greater possibilities for exploring regimes not currently accessible in real materials. Finely tuned laser beams are used to trap ultracold rubidium atoms (about a billion times colder than room temperature) in a lattice structure that precisely simulates the structure of ideal materials.