New understanding of superconductor's 'normal' state may open the way to solving longstanding puzzle

Siv Schwink
5/11/2017

Vidya Madhavan, a professor of physics at the University of Illinois at Urbana-Champaign, works with students in her lab, in the Frederick Seitz Materials Research Lab. Madhavan specializes in condensed matter experimentation.
Vidya Madhavan, a professor of physics at the University of Illinois at Urbana-Champaign, works with students in her lab, in the Frederick Seitz Materials Research Lab. Madhavan specializes in condensed matter experimentation.
Since the discovery two decades ago of the unconventional topological superconductor Sr2RuO4, scientists have extensively investigated its properties at temperatures below its 1 K critical temperature (Tc), at which a phase transition from a metal to a superconducting state occurs. Now experiments done at the University of Illinois at Urbana-Champaign in the Madhavan and Abbamonte laboratories, in collaboration with researchers at six institutions in the U.S., Canada, United Kingdom, and Japan, have shed new light on the electronic properties of this material at temperatures 4 K above Tc. The team’s findings may elucidate yet-unresolved questions about Sr2RuO4’s emergent properties in the superconducting state.

Vidya Madhavan, a physics professor and member of the Frederick Seitz Materials Research Lab at the U. of I., led the experiment. She explains, “We began from the widely held assumption that, in Sr2RO4’s normal metallic state above its Tc, the interactions of electrons would be sufficiently weak, so that the spectrum of excitations or electronic states would be well defined.”

Madhavan continues, “However, and this is a big surprise, our team observed large interaction effects in the normal metallic state. Electrons in metals have well defined momentum and energy. In simple metals, at low temperatures the electrons occupy all momentum states in a region bounded by a ‘Fermi surface.’ Here we found that the velocity of electrons in some directions across the Fermi surface were reduced by about 50 percent, which is not expected. We saw similar interaction effects in the tunneling density of the states. This is a significant reduction, and it was a great surprise. We thought we would just find the shape of the Fermi surface, but instead, we get these anomalies.”

Eduardo Fradkin, a professor of physics and director of the Institute for Condensed Matter Theory (ICMT) at the University of Illinois at Urbana-Champaign, works with theoretical condensed matter grad students in his group, at the ICMT.
Eduardo Fradkin, a professor of physics and director of the Institute for Condensed Matter Theory (ICMT) at the University of Illinois at Urbana-Champaign, works with theoretical condensed matter grad students in his group, at the ICMT.
Eduardo Fradkin, a physics professor and the director of the Institute for Condensed Matter Theory at the U. of I., comments, “The basic electronic properties of this material have been known for some time. Scientists study this material because it’s supposed to be a simple system for testing scientific effects. But the material has also been a source of ongoing debate in the field: this is a p-wave superconductor, with spin-triplet pairing. This has suggested that the superconducting state may be topological in nature. Understanding how this system becomes superconducting is an open and intriguing question.”

The breakthrough to understanding the puzzling properties of the material’s superconducting state may lie in this anomalous normal (non-superconducting) state. In a conventional normal metallic state at low temperature, the electronic states behave as well defined quasi-particles, as described by the Landau-Fermi liquid theory. But the researchers found anomalies in the particle interactions at 5 K that actually characterize Sr2RuO4 as a “strongly correlated metal.”

This research relies on current-measurement techniques that are highly sensitive, yielding very precise results. Images a-c represent conductance maps at varying energy levels. The high-resolution images d through l were taken with Fourier transform scanning tunneling spectroscopy; the bright square reveals the presence of an electron with a particular wavelength. In the superconducting state, these lights would disappear when electrons pair up into Cooper pairs. Image courtesy of Vidya Madhavan, University of Illinois at Urbana-Champaign, Department of Physics and Frederick Seitz Materials Research Laboratory
This research relies on current-measurement techniques that are highly sensitive, yielding very precise results. Images a-c represent conductance maps at varying energy levels. The high-resolution images d through l were taken with Fourier transform scanning tunneling spectroscopy; the bright square reveals the presence of an electron with a particular wavelength. In the superconducting state, these lights would disappear when electrons pair up into Cooper pairs. Image courtesy of Vidya Madhavan, University of Illinois at Urbana-Champaign, Department of Physics and Frederick Seitz Materials Research Laboratory
In the experiment, Madhavan’s team passed electrons into the material using an electronic metallic tip, then measured the resultant current using two highly advanced and complementary techniques, Fourier transform scanning tunneling spectroscopy and momentum resolved electron energy loss spectroscopy. In four data runs, the scientists found a significant change in the probability of the electron tunneling near zero energy, as compared with Fermi-liquids.

“We were surprised to see so much rich information,” shares Madhavan. “We started talking to Eduardo about the theory and to Peter Abbamonte about his experiments. Abbamonte’s group, applying the technique of momentum resolved electron energy loss spectroscopy, also finds interactions with collective modes at the same energies.”

“The open question now, we found something interesting at 4 K above the superconducting phase transition. What significance does this have to what’s happening below the superconducting temperature?” Madhavan continues.

The team plans to delve into that question next: “When Vidya goes to the superconducting state, we will know more,” Fradkin affirms. “These findings will enable her to take a unique approach to revealing the superconducting order parameter of this material in upcoming experiments.”

Advance online publication of these results appeared May 8, 2017, in Nature Physics.

 

This research was supported by the US Department of Energy, the Gordon and Betty Moore Foundation, and the National Science Foundation.

Recent News

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

  • Outreach

The most intriguing and relevant science happens at the highest levels of scientific pursuit-at major research universities and laboratories, far above and beyond typical high-school science curriculum. But this summer, 12 rising high school sophomores, juniors, and seniors-eight from Centennial and four from Central High Schools, both in Champaign-had the rare opportunity to partake in cutting-edge scientific research at a leading research institution.

The six-week summer-research Young Scholars Program (YSP) at the University of Illinois at Urbana-Champaign was initiated by members of the Nuclear Physics Laboratory (NPL) group, who soon joined forces with other faculty members in the Department of Physics and with faculty members of the POETS Engineering Research Center.

Imagine planting a single seed and, with great precision, being able to predict the exact height of the tree that grows from it. Now imagine traveling to the future and snapping photographic proof that you were right.

If you think of the seed as the early universe, and the tree as the universe the way it looks now, you have an idea of what the Dark Energy Survey (DES) collaboration has just done. In a presentation today at the American Physical Society Division of Particles and Fields meeting at the U.S. Department of Energy’s (DOE) Fermi National Accelerator Laboratory, DES scientists will unveil the most accurate measurement ever made of the present large-scale structure of the universe.

These measurements of the amount and “clumpiness” (or distribution) of dark matter in the present-day cosmos were made with a precision that, for the first time, rivals that of inferences from the early universe by the European Space Agency’s orbiting Planck observatory. The new DES result (the tree, in the above metaphor) is close to “forecasts” made from the Planck measurements of the distant past (the seed), allowing scientists to understand more about the ways the universe has evolved over 14 billion years.

“This result is beyond exciting,” said Scott Dodelson of Fermilab, one of the lead scientists on this result. “For the first time, we’re able to see the current structure of the universe with the same clarity that we can see its infancy, and we can follow the threads from one to the other, confirming many predictions along the way.”

It took two years on a supercomputer to simulate 1.2 microseconds in the life of the HIV capsid, a protein cage that shuttles the HIV virus to the nucleus of a human cell. The 64-million-atom simulation offers new insights into how the virus senses its environment and completes its infective cycle.

The findings are reported in the journal Nature Communications.