U. of I. team leads $2-million NSF study on best practices for STEM education reform

Siv Schwink
9/26/2013 12:00 AM

NSF WIDER Program aims to increase numbers and diversity in U.S. STEM degree programs

In December, the Obama administration announced that increasing the number of U.S. college graduates with degrees in science, technology, engineering and math (STEM) by one million over the next decade is a top priority that will be bolstered by several federal agencies. A new study at the University of Illinois will seek to provide U.S. institutions of higher education with a model of best practices and methods to reform gateway STEM courses offered in the first two years of study, where increased enrollments, student retention, and diversity are critical to meeting the growing national demand for STEM degree holders.
The National Science Foundation will fund the multi-year study, slated to begin in January, through a $2 million WIDER (Widening Implementation & Demonstration of Evidence Based Reforms) Grant. The ambitious U. of I. STEM education reform project spans three colleges—Liberal Arts and Sciences, Engineering, and Education—and targets 10 academic units—Physics, Mechanical Science and Engineering, Civil and Environmental Engineering, Electrical and Computer Engineering, Computer Science, Math, School of Integrative Biology, School of Molecular and Cellular Biology, Geology, and Chemistry. The gateway courses in these units enroll over 17,000 students annually, and several of the courses are required for nearly all STEM majors on campus.
U. of I. physicist and educational psychologist Jose Mestre is the principal investigator on the study.
“The big idea here is not to invent new reforms,” explained Mestre. “It’s taking evidence-based reforms—these are best practices for teaching and learning in gateway STEM course that have already been extensively tested and proven—and looking at how these can most effectively be implemented in an institutional setting. This is challenging because each department at a university will have its own methods and traditions and will generally resist change.”
The team will attempt to circumvent that resistance by establishing “communities of practice”—collaborations of key faculty members within each academic unit that will develop each unit’s strategy for implementing new pedagogies that move away from the traditional strictly lecture-based model of instruction. It’s hoped that these communities, once established and provided with guidance and methods, will promote the organic emergence of the best-suited evidence-based reforms within their respective departments.
Co-principal investigator Geoffrey Herman is a visiting assistant professor with the Illinois Foundry for Innovation in Engineering Education at the U. of I. whose most recent research has focused on lowering barriers to sustainable education reform. He will head the instructional support team that will serve as a resource to all 10 units.
“One of the greatest challenges to education reform is that it is often pursued by passionate, but lone heroes,” observed Herman. “These pioneers can make great strides, but the changes they make are rarely sustainable or adopted by others. Our ‘no heroes’ approach first aims to create and sustain cultural change through ‘communities of practice’ and to allow that cultural change to drive innovation and reform."
“The U. of I. is a large, research-intensive land-grant institution—an ideal setting for this kind of comprehensive study,” added Mestre. “The professors within each unit will have a large degree of choice in how to introduce and then maintain these evidence-based reforms, even with turnover of instructors. By evaluating what works and what doesn’t—what efforts result in greater student engagement, improved student learning, and higher recruitment and retention—we hope to be able to develop a transferable model of institutional change for other institutions.”
Co-principal investigator Jennifer Greene is a U. of I. educational psychologist and evaluation expert. She will head the team that will perform ongoing quantitative and qualitative assessments of each “community of practice” and will likewise evaluate student experiences and student performance in the courses. Evaluative feedback will be recorded and shared with the “communities of practice” to inform each unit’s conversations and processes of change.
Greene said she is thrilled to be included in this timely initiative: “This exceptionally talented and dedicated team of STEM educators has generated a transformational vision for undergraduate teaching and learning in the sciences in the WIDER project. I am delighted and honored to provide this team with ongoing evaluative information on how well this vision is being implemented and received by Illinois students, colleagues, and administrators and then to share what has been learned about effective STEM teaching and learning with the larger global science-education community.”
Two more co-principal investigators will coordinate reform efforts at each college. U. of I. geologist Jonathan Tomkin will work within the College of Liberal Arts and Sciences, and U. of I. mechanical engineer Matthew West, within the College of Engineering. Each will engage high-level administrative support for the efforts of the “communities of practice”.
“The WIDER program will provide a substantial boost to reform efforts already underway in the College of Engineering, significantly enhancing the pace of innovation in our core gateway courses and allowing us to integrate our efforts with STEM departments in the College of Liberal Arts and Sciences, where engineering students learn core science subjects,” said West. “In particular, the Engineering Strategic Instructional Initiatives Program (SIIP) provided a test bed for the ‘communities of practice’ that form the centerpiece of our WIDER strategy, and going forward the SIIP and WIDER programs will synergistically interact to advance transformative pedagogy at the University of Illinois.”
Tomkin added, “Liberal Arts and Sciences has the largest introductory STEM courses in the University. Every semester, thousands of students take classes in chemistry, biology and math. By accelerating the adoption of the best educational approaches and technologies in these classes, WIDER will enhance every science and engineering undergraduate experience.”

This material is based upon work supported by the National Science Foundation under Grant No. 1347722. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Recent News

Mason says, “there are so few of us, people get the impression that we are like unicorns – either non-existent or magical.” We are far from non-existent, but I find women of color to be quite magical. However, as Jesse Williams says, “Just because we’re magic, doesn’t mean we’re not real.”

  • Outreach

It’s up to you and your team to save the free world from evil forces plotting its destruction, and you have precisely 60 minutes to do it. You must find out what happened to Professor Schrödenberg, a University of Illinois physicist who disappeared after developing a top-secret quantum computer that can crack any digital-security encryption code in the world.  Unfortunately, the previous groups of special agents assigned to the case disappeared while investigating the very room in which you now find yourself locked up, Schrödenberg’s secret lab.

LabEscape is a new science-themed escape room now open at Lincoln Square Mall in Urbana, testing the puzzle-solving skills of groups of up to six participants at a time. Escape rooms, a new form of entertainment cropping up in cities across the U.S. and around the globe, provide in-person mystery-adventure experiences that have been compared to living out a video-game or movie script. A team of participants is presented with a storyline and locked into a room with only one hour to find and decipher a sequence of interactive puzzles that will unlock the door and complete the mission. Two escape room businesses are already in operation in the area, C-U Adventures in Time and Space in Urbana and Brainstorm Escapes in Champaign.


  • Research
  • AMO/Quantum Physics
  • Condensed Matter Physics

Topological insulators, an exciting, relatively new class of materials, are capable of carrying electricity along the edge of the surface, while the bulk of the material acts as an electrical insulator. Practical applications for these materials are still mostly a matter of theory, as scientists probe their microscopic properties to better understand the fundamental physics that govern their peculiar behavior.

Using atomic quantum-simulation, an experimental technique involving finely tuned lasers and ultracold atoms about a billion times colder than room temperature, to replicate the properties of a topological insulator, a team of researchers at the University of Illinois at Urbana-Champaign has directly observed for the first time the protected boundary state (the topological soliton state) of the topological insulator trans-polyacetylene. The transport properties of this organic polymer are typical of topological insulators and of the Su-Schrieffer-Heeger (SSH) model.

Physics graduate students Eric Meier and Fangzhao Alex An, working with Professor Bryce Gadway, developed a new experimental method, an engineered approach that allows the team to probe quantum transport phenomena.

  • Research
  • Astrophysics/Cosmology

In its search for extrasolar planets, the Kepler space telescope looks for stars whose light flux periodically dims, signaling the passing of an orbiting planet in front of the star. But the timing and duration of diminished light flux episodes Kepler detected coming from KIC 846852, known as Tabby’s star, are a mystery. These dimming events vary in magnitude and don’t occur at regular intervals, making an orbiting planet an unlikely explanation. The source of these unusual dimming events is the subject of intense speculation. Suggestions from astronomers, astrophysicists, and amateur stargazers have ranged from asteroid belts to alien activity.  

Now a team of scientists at the University of Illinois at Urbana-Champaign—physics graduate student Mohammed Sheikh, working with Professors Karin Dahmen and Richard Weaver—proffer an entirely novel solution to the Tabby’s star puzzle. They suggest the luminosity variations may be intrinsic to the star itself.