Yann Robert Chemla

Associate Professor


Yann Robert Chemla

Primary Research Area

  • Biological Physics
161 Loomis Laboratory

For more information


Professor Yann Chemla received his PhD. in physics from the University of California, Berkeley in 2001. As an experimentalist in applied superconductivity, he developed an interest in biology through his study of magnetotactic bacteria with a superconducting magnetometer (Chemla et al., Biophys J., 1999), and the development of a biosensor based on functionalized magnetic nanoparticles (Chemla et al., PNAS, 2000). Prof. Chemla made the “leap” to biophysics as a postdoctoral fellow, moving down the hall to Prof. Carlos Bustamante’s laboratory at Berkeley. There, he learned the techniques of single-molecule manipulation and used an optical trap to study viral DNA packaging (Chemla et al., Cell, 2005). In 2005, he received one of the prestigious Career Awards at the Scientific Interface (CASI) from the Burroughs-Wellcome Fund. He joined the Department of Physics at Illinois in January 2007.

Research Statement

The cell is a factory of complex molecular structures that carry out specialized mechanical tasks and that behave remarkably like machines. Molecular motors, as they are called, are involved in such diverse processes as replicating the genome or transporting cargo across the cell, typically moving in discrete steps along a track — actin, microtubules, or DNA itself — converting chemical energy into mechanical work. A broad area of interest in my laboratory will be understanding the mechanism by which these molecular machines operate, and specifically, the process of mechano-chemical conversion.

Biophysical techniques that can detect such processes at the level of a single molecule are extremely powerful, since they are not subject to the averaging artifacts of traditional bulk biochemical methods. Optical traps, or “optical tweezers,” which utilize the force generated by focused laser light to manipulate microscopic objects, have been used extensively to measure the movements and forces exerted by individual molecular motors.

Recently, advances to this technique have made it possible to resolve motions on the scale of a single base pair of DNA, or only 3.4Å (see for example, Moffitt et al., PNAS, 2006). These high-resolution optical trapping techniques have the potential to reveal, for the first time, the stepwise motions of a host of molecular motors that translocate along or interact with nucleic acids and proteins. Access to this length scale should lead to a more detailed and refined understanding of many fundamental processes.

Students in my laboratory will work on all facets of research in this area: design and construction of instrumentation, development of biological systems for single-molecule manipulation, and quantitative analysis and modeling of collected data. Interested students and postdocs with backgrounds in physics, biology, chemistry, or related fields are welcome to contact me.


  • Deanís Award for Excellence in Research, University of Illinois, Urbana-Champaign (2016)
  • University of Illinois Willett Faculty Scholar Award (2015)
  • Center for Advanced Study (2012)
  • Sloan Research Fellowship (2010)
  • NSF CAREER Award (2010)
  • Career Awards at the Scientific Interface (CASI), Burroughs-Wellcome Fund (2005)

Semesters Ranked Excellent Teacher by Students

Spring 2012PHYS 427

Selected Articles in Journals

Related news

  • Research
  • Biological Physics
  • Biophysics

By combining two highly innovative experimental techniques, scientists at the University of Illinois at Urbana-Champaign have for the first time simultaneously observed the structure and the correlated function of specific proteins critical in the repair of DNA, providing definitive answers to some highly debated questions, and opening up new avenues of inquiry and exciting new possibilities for biological engineering.

Illinois biological physicists Taekjip Ha and Yann Chemla have combined two cutting-edge laboratory techniques that together directly get at the structure-function relationship in proteins. Ha is well recognized for his innovative single molecule fluorescence microscopy and spectroscopy techniques. Professor Yann Chemla is a top expert in optical trapping techniques. Their combined method—simultaneous fluorescence microscopy and optical trapping—yields far more definitive answers to questions relating structure to function than either technique could independently.


  • Accolades
  • Biological Physics
  • Biophysics

Associate professor Yann Chemla is among the 10 newly named 2015 Donald Biggar Willett Scholars, selected by the College of Engineering at the University of Illinois at Urbana-Champaign. This recognition is for outstanding young faculty members who, relatively early in their careers, are making substantial contributions to their respective fields.