News

  • In the Media

Albert Einstein was right again. More than 100 years ago, his calculations suggested that when too much energy or matter is concentrated in one place, it will collapse in on itself and turn into a dark vortex of nothingness. Physicists found evidence to support Einstein’s black hole concept, but they’d never observed one directly. In 2017, 200-plus scientists affiliated with more than 60 institutions set out to change that, using eight global radio observatories to chart the sky for 10 days. In April they released their findings, which included an image of a dark circle surrounded by a fiery doughnut (the galaxy Messier 87), 55 million light years away and 6.5 billion times more massive than our sun. “We have seen what we thought was unseeable,” said Shep Doeleman, leader of what came to be known as the Event Horizon Telescope team. The team’s name refers to the edge of a black hole, the point beyond which light and matter cannot escape. In some ways, the first picture of a black hole is also the first picture of nothing.

Institute for Condensed Matter Theory in the Department of Physics at the University of Illinois at Urbana-Champaign has recently received a five-year grant of over $1 million from the Gordon and Betty Moore Foundation. The grant is part of the Gordon and Betty Moore Foundation’s Emergent Phenomena in Quantum Systems (EPiQS) Initiative, which strives to catalyze major discoveries in the field of quantum materials—solids and engineered structures characterized by novel quantum phases of matter and exotic cooperative behaviors of electrons. This is the second 5-year EPiQS grant awarded to the ICMT by the Moore Foundation. The two awards establish an EPiQS Theory Center at the Institute for Condensed Matter Theory.

  • Outreach
  • Accessibility

University of Illinois at Urbana-Champaign physics graduate student Colin Lualdi quickly realized he was venturing into uncharted territory when he arrived at Illinois Physics at the start of Fall 2017. Deaf since birth and a native speaker of American Sign Language (ASL), Lualdi was now among a very small group worldwide of Deaf individuals working in physics. The exhilaration of performing cutting-edge research was accompanied by a sobering discovery: the lack of a common language model for effective scientific discourse in ASL was going to be a far greater challenge than he’d anticipated. Lualdi has embraced his own accessibility challenges as an opportunity to address a pressing need in the broader Deaf community. He has teamed up with colleagues at other research institutions to develop a robust and shared framework for scientific discourse in ASL. Specifically, Colin has been working with ASL Clear and ASLCORE, two national scientific sign language initiatives that are making good progress.

  • Faculty Highlights
  • Condensed Matter

Fahad Mahmood joins the condensed matter effort at Illinois. In his research on ultra-fast optical spectroscopies of quantum materials, he uses extremely short laser pulses to study problems at the intersection of strongly correlated quantum materials and non-equilibrium physics. He is best known for his work on THz collective modes and fluctuations in cuprate superconductors and on Floquet-Bloch states in topological insulators.

  • Faculty Highlights
  • Nuclear Physics

Jaki Noronha-Hostler is a nuclear physicist. In her research, she does simulations of the most perfect fluid we know of – quark-gluon plasma – moving at the speed of light, and then compares the simulations directly to experimental data.

  • Research
  • Biological Physics
  • Theoretical Biological Physics
  • Biophysics

Scientists have simulated every atom of a light-harvesting structure in a photosynthetic bacterium that generates energy for the organism. The simulated organelle behaves just like its counterpart in nature, the researchers report. The work is a major step toward understanding how some biological structures convert sunlight into chemical energy, a biological innovation that is essential to life.

The researchers report their findings in the journal Cell.

The team originally was led by University of Illinois Physics Professor Klaus Schulten and the work continued after Schulten’s death in 2016. The study fulfills, in part, Schulten’s decades-long dream of discovering the mechanisms by which atomic-level interactions build and animate living systems.

  • Faculty Highlights
  • Biological Physics
  • Biophysics

As a biological physicist, Ido Golding studies the function of living cells. He is best known for the experimental quantification of key biological processes, such as gene expression and viral infection, inside individual bacterial cells.

  • Outreach
  • Quantum Information Science

As quantum communication, sensing, and computation continue to transition from idea to reality, the second Chicago Quantum Summit at the University of Chicago gathered together more than 120 scientists, engineers, and members of industry from around the world to discuss the latest research and promising paths forward for the field.

The summit, which included a public lecture on Oct. 24, followed by the day-long summit program on Oct. 25, contained discussions on the quantum technologies likely to make the next breakthroughs, the role of government and industry, and the workforce that is needed to create and commercialize quantum technologies.

  • Faculty Highlights
  • High Energy Physics

Yoni's research asks questions such as “What is the mass of the dark matter particle,” “What other particles that we know of does it interact with,” and “How was it created in the early universe”?

  • Faculty Highlights
  • Biological Physics
  • Biophysics

Sangjin is a biological physicist who brings both graduate work in single-molecule biophysics and postdoctoral research in microbiology to her research plan at Illinois. She developed the first study to establish that DNA has an allosteric property.

  • Alumni News

“A leading academic and researcher, Professor Chetty brings with him a range of skills in the higher education sector and a profound understanding of the national research system, which will be invaluable to the University. On behalf of the Wits community, I would like to welcome Professor Chetty to the institution and wish him well as he leads the nine schools that make up the Faculty of Science. This will enable Wits to continue to produce the high level scarce skills required to move South Africa forward,” says Professor Adam Habib, Vice-Chancellor and Principal of Wits University.