Home

  • Outreach
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics
  • Quantum Physics
  • Quantum Computing
  • Research
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics
  • Alumni News
  • In the Media
  • Atomic, Molecular, and Optical Physics

News

  • Accolades
  • Alumni News
  • Biological Physics
  • Quantitative Physics

Dr. Hong-Yan Shih, a postdoctoral researcher at the Department of Physics and at the Carl R. Woese Institute for Genomic Biology at the University of Illinois at Urbana-Champaign, has been selected for the 2019 Dissertation Award in Statistical and Nonlinear Physics of the American Physical Society (APS). This award recognizes exceptional young scientists who have performed original doctoral thesis work of outstanding scientific quality in the area of statistical and nonlinear physics. Shih will be presented with the award at the APS March Meeting, where she will give an invited talk.

Shih completed her doctoral dissertation titled “Spatial-temporal patterns in evolutionary ecology and fluid turbulence” in 2017 working in Professor Nigel Goldenfeld’s theoretical physics group. It explores “the turbulence of ecosystems and the ecology of turbulence.” In her thesis, Shih reports on three projects at the boundaries of ecology and evolution, analyzed using methods from statistical mechanics, and a fourth project that made a major advance to the important problem of the laminar-turbulent transition of fluids in pipes. This latter problem was first scientifically studied in 1883, and Shih’s contribution arose from an unusual perspective.

  • In the Media
  • Quantum Computing

“I see the country at a crossroads with quantum information systems,” said Brian DeMarco, a professor of physics at the University of Illinois who specializes in quantum computing and has worked with government organizations on the technology. “I can see things not working out, where the balance is not good, and it derails our ability to compete.”

  • Research
  • Condensed Matter Theory

The team, which also includes Illinois condensed matter physicist Karin Dahmen and her graduate student Li Shu, published its results in Communications Physics. The experimental work was done by Dr. Yang Hu, as part of his Ph. D thesis. 

Until this study researchers couldn’t make sense of the mechanism behind dislocation avalanche within a structure. However, the Illinois team found that a series of dislocations piling up forming a dam to prohibit movement. Behind the dam are tangled dislocations. Once there is enough pressure, an avalanche forms causing the dam to give way and sudden movement of the tangled dislocations, which weakens the metal and can eventually lead to catastrophic failure. By having a better understanding of this process, this study promises to aid in developing even stronger materials in the future and to better predict when a structure may be in peril.

  • Research
  • Atomic, Molecular, and Optical Physics
  • Condensed Matter Theory

A team of experimental physicists at the University of Illinois at Urbana-Champaign have made the first observation of a specific type of TI that’s induced by disorder. Professor Bryce Gadway and his graduate students Eric Meier and Alex An used atomic quantum simulation, an experimental technique employing finely tuned lasers and ultracold atoms about a billion times colder than room temperature, to mimic the physical properties of one-dimensional electronic wires with precisely tunable disorder. The system starts with trivial topology just outside the regime of a topological insulator; adding disorder nudges the system into the nontrivial topological phase.

  • Accolades
  • Condensed Matter Physics

Professor Nadya Mason has been elected a Fellow of the American Physical Society (APS) "for seminal contributions to the understanding of electronic transport in low dimensional conductors, mesoscopic superconducting systems, and topological quantum materials."

Mason is an experimental condensed matter physicist who has earned a reputation for her deep-sighted and thorough lines of attack on the most pressing problems in strongly correlated nanoscale physics.

The future of Physics

Support our commitment to train the next generation of researchers and teachers.

Engineering Visionary Scholarships

$25 Million
Matching
Challenge

Now through the end of 2019, The Grainger Foundation will match all donations made to the College's Engineering Visionary Scholarship Initiative.

Learn more

LabEscape

LabEscape

In the first science-based escape room, it's up to you and your team to save the free world from evil forces plotting its destruction, and you have precisely 60 minutes to do it. You must find out what happened to Professor Schrödenberg, a University of Illinois physicist who disappeared after developing a top-secret quantum computer. The previous groups of special agents assigned to the case disappeared while investigating the very room in which you now find yourself locked up, Schrödenberg's secret lab.

Saturday Physics for Everyone

Saturday Physics for Everyone

Free Saturday-morning lectures on modern aspects of the physical sciences for high school students and the general public! Learn about recent advances in the physical sciences from world-class scientists and researchers and gain an understanding of how physics affects development in modern technology and influences your daily life. Select Saturdays in the fall, 10:15 a.m. to 11:30 a.m., at Loomis Laboratory of Physics in Urbana. Click for full schedule!

Ask
the
Van

Explain why salt makes ice cooler.

Events this week