# Pi is not as constant as you think!

3/12/2015

A lot of people are celebrating Pi Day on March 14, 2015 at 9:26 am. (This makes sense, of course, only if you put the month before the day when you write your date.) But let us not forget that π (the ratio of a circle's circumference to its diameter) is not actually constant in non-Euclidean geometry. And since we live on a two-dimensional spherical surface, this might actually make a difference for circles much smaller than we would intuitively might have guessed. But first, let's do some simple geometry: Imagine a sphere of radius R. We define a circle on the surface of that sphere as we would define a circle anywhere: a geometrical shape consisting of points equally distant from a selected point. On a 2D spherical surface those circles look like this:

Fig. 1. 3D sphere with circles on its surface.

Note that radius r is measured along the curved line on the surface of the sphere from a point also on that surface. Now, if we actually calculate the circumference of one of the circles of radius r, it would be L=2πR sin(r/R)=2πR sin(α/2), where α is the flat angle from the center of the sphere to the circle on its surface (see Fig. 1). So, π', the varying ratio of the circumference to the diameter, would be
π'=L/D=π sin (α/2)/(α/2)=π sin (r/R)/(r/R).