Physicists make breakthrough in understanding turbulent fluids

Celia Elliott

When a fluid flows along a boundary, irregularities in the surface of the boundary cause frictional drag, which in turn creates “tumbling” in the fluid, or turbulence. Turbulence is everywhere in everyday life—its effects govern the flow of rivers and oil pipelines, the drag on airplanes and baseballs, and even the circulation of blood in our bodies.
Despite its importance, however, turbulence is not well understood. Even today, engineers cannot accurately predict the pressure needed to force a fluid such as oil or natural gas through a pipeline at a desired rate; instead they infer flow rates from phenomenological charts based on experiments that were done in the 1930s.
The long-sought connection between frictional drag and the eddies in fluid flow, first proposed by Gustavo Gioia, Pinaki Chakraborty and Nigel Goldenfeld at the University of Illinois, has been tested experimentally, as reported today in Nature Physics.  The measurements were performed by a team from the University of Illinois at Urbana-Champaign (Tuan Tran, Pinaki Chakraborty, Nicholas Guttenberg, in addition to Gioia and Goldenfeld), from the University of Pittsburgh (Alisia Prescott and Walter Goldburg), and from the University of Bordeaux (Hamid Kellay).
In these experiments, a vertically flowing soap film held between two wires is pierced by a turbulence-inducing comb, and the fluid motion is probed by laser beams. The soap film is thin enough that the fluid behaves as if it were two-dimensional, not three-dimensional. The setup measures both the two-dimensional turbulent velocity fluctuations and the frictional drag at the bounding wires. 
The theory predicts that in two-dimensional fluids, because of the relationship between the fluctuations and the drag, the drag should have a special dependence on the flow speed, different from that observed in regular three-dimensional turbulent pipe flow. The new experiments fully support the Illinois theoretical work, but are outside the realm of standard textbook expectations, dating back to the early 20th century.
Although turbulence remains a deeply challenging problem, progress has occurred because the investigators asked a new question: How can we connect the small-scale fluctuations in the turbulent fluid to the large-scale effects of turbulent drag? According to the team that conducted the experiment, the implications of the work have practical applications: for example, it can be used to predict how to transport oil and gas through long pipelines at lower energy cost, by adding polymer molecules to the fluid to make it flow with less drag.

Recent News

  • In the Media

Albert Einstein was right again. More than 100 years ago, his calculations suggested that when too much energy or matter is concentrated in one place, it will collapse in on itself and turn into a dark vortex of nothingness. Physicists found evidence to support Einstein’s black hole concept, but they’d never observed one directly. In 2017, 200-plus scientists affiliated with more than 60 institutions set out to change that, using eight global radio observatories to chart the sky for 10 days. In April they released their findings, which included an image of a dark circle surrounded by a fiery doughnut (the galaxy Messier 87), 55 million light years away and 6.5 billion times more massive than our sun. “We have seen what we thought was unseeable,” said Shep Doeleman, leader of what came to be known as the Event Horizon Telescope team. The team’s name refers to the edge of a black hole, the point beyond which light and matter cannot escape. In some ways, the first picture of a black hole is also the first picture of nothing.

Institute for Condensed Matter Theory in the Department of Physics at the University of Illinois at Urbana-Champaign has recently received a five-year grant of over $1 million from the Gordon and Betty Moore Foundation. The grant is part of the Gordon and Betty Moore Foundation’s Emergent Phenomena in Quantum Systems (EPiQS) Initiative, which strives to catalyze major discoveries in the field of quantum materials—solids and engineered structures characterized by novel quantum phases of matter and exotic cooperative behaviors of electrons. This is the second 5-year EPiQS grant awarded to the ICMT by the Moore Foundation. The two awards establish an EPiQS Theory Center at the Institute for Condensed Matter Theory.

  • Outreach
  • Accessibility

University of Illinois at Urbana-Champaign physics graduate student Colin Lualdi quickly realized he was venturing into uncharted territory when he arrived at Illinois Physics at the start of Fall 2017. Deaf since birth and a native speaker of American Sign Language (ASL), Lualdi was now among a very small group worldwide of Deaf individuals working in physics. The exhilaration of performing cutting-edge research was accompanied by a sobering discovery: the lack of a common language model for effective scientific discourse in ASL was going to be a far greater challenge than he’d anticipated. Lualdi has embraced his own accessibility challenges as an opportunity to address a pressing need in the broader Deaf community. He has teamed up with colleagues at other research institutions to develop a robust and shared framework for scientific discourse in ASL. Specifically, Colin has been working with ASL Clear and ASLCORE, two national scientific sign language initiatives that are making good progress.