Physicists make breakthrough in understanding turbulent fluids

Celia Elliott
6/2/2010

When a fluid flows along a boundary, irregularities in the surface of the boundary cause frictional drag, which in turn creates “tumbling” in the fluid, or turbulence. Turbulence is everywhere in everyday life—its effects govern the flow of rivers and oil pipelines, the drag on airplanes and baseballs, and even the circulation of blood in our bodies.
 
Despite its importance, however, turbulence is not well understood. Even today, engineers cannot accurately predict the pressure needed to force a fluid such as oil or natural gas through a pipeline at a desired rate; instead they infer flow rates from phenomenological charts based on experiments that were done in the 1930s.
 
The long-sought connection between frictional drag and the eddies in fluid flow, first proposed by Gustavo Gioia, Pinaki Chakraborty and Nigel Goldenfeld at the University of Illinois, has been tested experimentally, as reported today in Nature Physics.  The measurements were performed by a team from the University of Illinois at Urbana-Champaign (Tuan Tran, Pinaki Chakraborty, Nicholas Guttenberg, in addition to Gioia and Goldenfeld), from the University of Pittsburgh (Alisia Prescott and Walter Goldburg), and from the University of Bordeaux (Hamid Kellay).
 
In these experiments, a vertically flowing soap film held between two wires is pierced by a turbulence-inducing comb, and the fluid motion is probed by laser beams. The soap film is thin enough that the fluid behaves as if it were two-dimensional, not three-dimensional. The setup measures both the two-dimensional turbulent velocity fluctuations and the frictional drag at the bounding wires. 
 
The theory predicts that in two-dimensional fluids, because of the relationship between the fluctuations and the drag, the drag should have a special dependence on the flow speed, different from that observed in regular three-dimensional turbulent pipe flow. The new experiments fully support the Illinois theoretical work, but are outside the realm of standard textbook expectations, dating back to the early 20th century.
 
Although turbulence remains a deeply challenging problem, progress has occurred because the investigators asked a new question: How can we connect the small-scale fluctuations in the turbulent fluid to the large-scale effects of turbulent drag? According to the team that conducted the experiment, the implications of the work have practical applications: for example, it can be used to predict how to transport oil and gas through long pipelines at lower energy cost, by adding polymer molecules to the fluid to make it flow with less drag.

Recent News

  • In the Media

There have been accusations for years that the Major League ball is “juiced,” thus accounting for the increasing power numbers.

MLB officials have categorically denied that, and last year, commissioned a study of the baseball and how it’s produced.

In the landmark 85-page independent report replete with color graphs, algorithms and hypotheses, a group of 10 highly-rated professors and scientists chaired by Alan Nathan determined that the ball is not livelier or “juiced.” Nathan is a professor emeritus of physics from the University of Illinois at Urbana Champaign.

The surge in home runs “seems, instead, to have arisen from a decrease in the ball’s drag properties, which cause it to carry further than previously, given the same set of initial conditions – exit velocity, launch and spray angle, and spin. So, there is indirect evidence that the ball has changed, but we don’t yet know how,” wrote Leonard Mlodinow, in the report’s eight-page executive summary.

  • In the Media

Growing up in Trinidad and Tobago, Kandice Tanner went to a school where she was one of only a dozen girls among 1200 pupils. She had switched from an all-girl school to avoid the distractions of socializing and to take the more advanced math classes offered at the boys’ school. “Being submerged in an all-male environment early on was beneficial to me,” Tanner says. “I felt comfortable with guys, and more important, I knew I could hold my own in a male-dominated environment.”

  • Research
  • Condensed Matter Physics

Illinois Physics Professor Philip Phillips and Math Professor Gabriele La Nave have theorized a new kind of electromagnetism far beyond anything conceivable in classical electromagnetism today, a conjecture that would upend our current understanding of the physical world, from the propagation of light to the quantization of charge. Their revolutionary new theory, which Phillips has dubbed “fractional electromagnetism,” would also solve an intriguing problem that has baffled physicists for decades, elucidating emergent behavior in the “strange metal” of the cuprate superconductors.

This research is published in an upcoming colloquium paper in Reviews of Modern Physics (arXiv:1904.01023v1).

  • Accolades
  • Student News

The BPS Art of Science Image Contest took place again this year, during the 63rd Annual Meeting in Baltimore. The image that won first place was submitted by Angela Barragan, PhD Candidate at the Beckman Institute UIUC. Barragan took some time to provide information about the image and the science it represents.