Physicists make breakthrough in understanding turbulent fluids

Celia Elliott

When a fluid flows along a boundary, irregularities in the surface of the boundary cause frictional drag, which in turn creates “tumbling” in the fluid, or turbulence. Turbulence is everywhere in everyday life—its effects govern the flow of rivers and oil pipelines, the drag on airplanes and baseballs, and even the circulation of blood in our bodies.
Despite its importance, however, turbulence is not well understood. Even today, engineers cannot accurately predict the pressure needed to force a fluid such as oil or natural gas through a pipeline at a desired rate; instead they infer flow rates from phenomenological charts based on experiments that were done in the 1930s.
The long-sought connection between frictional drag and the eddies in fluid flow, first proposed by Gustavo Gioia, Pinaki Chakraborty and Nigel Goldenfeld at the University of Illinois, has been tested experimentally, as reported today in Nature Physics.  The measurements were performed by a team from the University of Illinois at Urbana-Champaign (Tuan Tran, Pinaki Chakraborty, Nicholas Guttenberg, in addition to Gioia and Goldenfeld), from the University of Pittsburgh (Alisia Prescott and Walter Goldburg), and from the University of Bordeaux (Hamid Kellay).
In these experiments, a vertically flowing soap film held between two wires is pierced by a turbulence-inducing comb, and the fluid motion is probed by laser beams. The soap film is thin enough that the fluid behaves as if it were two-dimensional, not three-dimensional. The setup measures both the two-dimensional turbulent velocity fluctuations and the frictional drag at the bounding wires. 
The theory predicts that in two-dimensional fluids, because of the relationship between the fluctuations and the drag, the drag should have a special dependence on the flow speed, different from that observed in regular three-dimensional turbulent pipe flow. The new experiments fully support the Illinois theoretical work, but are outside the realm of standard textbook expectations, dating back to the early 20th century.
Although turbulence remains a deeply challenging problem, progress has occurred because the investigators asked a new question: How can we connect the small-scale fluctuations in the turbulent fluid to the large-scale effects of turbulent drag? According to the team that conducted the experiment, the implications of the work have practical applications: for example, it can be used to predict how to transport oil and gas through long pipelines at lower energy cost, by adding polymer molecules to the fluid to make it flow with less drag.

Recent News

  • Research
  • High Energy Physics
  • Particle Physics
The lead ion run is under way. On 8 November at 21:19, the four experiments at the Large Hadron Collider - ALICE, ATLAS, CMS and LHCb - recorded their first collisions of lead nuclei since 2015. For three weeks and a half, the world’s biggest accelerator will collide these nuclei, comprising 208 protons and neutrons, at an energy of 5.02 teraelectronvolts (TeV) for each colliding pair of nucleons (protons and neutrons). This will be the fourth run of this kind since the collider began operation. In 2013 and 2016, lead ions were collided with protons in the LHC.

Anne Sickles is co-convener of the ATLAS Heavy Ion Working Group, which will use these data.
  • Outreach
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics
  • Quantum Physics
  • Quantum Computing

A two-day summit in Chicago taking place November 8 and 9 has brought together leading experts in quantum information science to advance U.S. efforts in what’s been called the next technological “space race”—and to position Illinois at the forefront of that race. The inaugural Chicago Quantum Summit, hosted by the Chicago Quantum Exchange, includes high-level representation from Microsoft, IBM, Alphabet Inc.’s Google, the National Science Foundation, the U.S. Department of Energy, the U.S. Department of Defense, and the National Institute of Standards and Technology.

The University of Illinois at Urbana-Champaign recently joined the Chicago Quantum Exchange as a core member, making it one of the largest quantum information science (QIS) collaborations in the world. The exchange was formed last year as an alliance between the University of Chicago and the two Illinois-based national laboratories, Argonne and Fermilab.

Representing the U of I at the summit are physics professors Brian DeMarco, Paul Kwiat, and Dale Van Harlingen, who are key players in the planned Illinois Quantum Information Science and Technology Center (IQUIST) on the U of I campus. The U of I news bureau announced last week the university’s $15-million commitment to the new center, which will form a collaboration of physicists, engineers, and computer scientists to develop new algorithms, materials, and devices to advance QIS.

  • Accolades

Loomis Laboratory has been awarded a third-place prize in the Energy Conservation Incentive Program of the University of Illinois at Urbana-Champaign. This program, administered by Facilities and Services, both funds and recognizes efforts to reduce energy consumption through facilities upgrades. A plaque commemorating the award will be mounted in the Walnut Hallway. The award comes with a $26,000 prize for additional energy projects.

  • Research
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics

The University of Illinois at Urbana-Champaign is making a $15 million investment in the emerging area of quantum information science and engineering, a field poised to revolutionize computing, communication, security, measurement and sensing by utilizing the unique and powerful capabilities of quantum mechanics.