Physicists make breakthrough in understanding turbulent fluids

Celia Elliott

When a fluid flows along a boundary, irregularities in the surface of the boundary cause frictional drag, which in turn creates “tumbling” in the fluid, or turbulence. Turbulence is everywhere in everyday life—its effects govern the flow of rivers and oil pipelines, the drag on airplanes and baseballs, and even the circulation of blood in our bodies.
Despite its importance, however, turbulence is not well understood. Even today, engineers cannot accurately predict the pressure needed to force a fluid such as oil or natural gas through a pipeline at a desired rate; instead they infer flow rates from phenomenological charts based on experiments that were done in the 1930s.
The long-sought connection between frictional drag and the eddies in fluid flow, first proposed by Gustavo Gioia, Pinaki Chakraborty and Nigel Goldenfeld at the University of Illinois, has been tested experimentally, as reported today in Nature Physics.  The measurements were performed by a team from the University of Illinois at Urbana-Champaign (Tuan Tran, Pinaki Chakraborty, Nicholas Guttenberg, in addition to Gioia and Goldenfeld), from the University of Pittsburgh (Alisia Prescott and Walter Goldburg), and from the University of Bordeaux (Hamid Kellay).
In these experiments, a vertically flowing soap film held between two wires is pierced by a turbulence-inducing comb, and the fluid motion is probed by laser beams. The soap film is thin enough that the fluid behaves as if it were two-dimensional, not three-dimensional. The setup measures both the two-dimensional turbulent velocity fluctuations and the frictional drag at the bounding wires. 
The theory predicts that in two-dimensional fluids, because of the relationship between the fluctuations and the drag, the drag should have a special dependence on the flow speed, different from that observed in regular three-dimensional turbulent pipe flow. The new experiments fully support the Illinois theoretical work, but are outside the realm of standard textbook expectations, dating back to the early 20th century.
Although turbulence remains a deeply challenging problem, progress has occurred because the investigators asked a new question: How can we connect the small-scale fluctuations in the turbulent fluid to the large-scale effects of turbulent drag? According to the team that conducted the experiment, the implications of the work have practical applications: for example, it can be used to predict how to transport oil and gas through long pipelines at lower energy cost, by adding polymer molecules to the fluid to make it flow with less drag.

Recent News

Innovative materials are the foundation of countless breakthrough technologies, and the Illinois Materials Research Science and Engineering Center will develop them. The new center is supported by a six-year, $15.6 million award from the National Science Foundation’s Materials Research Science and Engineering Centers program. It is led by Professor Nadya Mason of Engineering at Illinois’ Department of Physics and its Frederick Seitz Materials Research Laboratory

By building highly interdisciplinary teams of researchers and students, the Illinois Materials Research Center will focus on two types of materials. One group will study new magnetic materials, where ultra-fast magnetic variations could form the basis of smaller, more robust magnetic memory storage. The second group will design materials that can withstand bending and crumpling that typically destroys the properties of those materials and even create materials where crumpling enhances performance.

  • In the Media
  • Condensed Matter Physics
  • Biological Physics

Quanta Magazine recently spoke with Goldenfeld about collective phenomena, expanding the Modern Synthesis model of evolution, and using quantitative and theoretical tools from physics to gain insights into mysteries surrounding early life on Earth and the interactions between cyanobacteria and predatory viruses. A condensed and edited version of that conversation follows.

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

  • Outreach

The most intriguing and relevant science happens at the highest levels of scientific pursuit-at major research universities and laboratories, far above and beyond typical high-school science curriculum. But this summer, 12 rising high school sophomores, juniors, and seniors-eight from Centennial and four from Central High Schools, both in Champaign-had the rare opportunity to partake in cutting-edge scientific research at a leading research institution.

The six-week summer-research Young Scholars Program (YSP) at the University of Illinois at Urbana-Champaign was initiated by members of the Nuclear Physics Laboratory (NPL) group, who soon joined forces with other faculty members in the Department of Physics and with faculty members of the POETS Engineering Research Center.