2015 Bardeen Prize awarded to Vinay Ambegaokar

Siv Schwink
4/15/2015

Dr. Vinay Ambegaokar, Goldwin Smith Professor of Physics Emeritus at Cornell University’s Laboratory of Atomic and Solid State Physics in Ithaca New York, is the 2015 John Bardeen Prize recipient. Ambegaokar will accept the award on August 24 during the 11th International Conference on Materials and Mechanisms of Superconductivity, to be held in Geneva, Switzerland.
Dr. Vinay Ambegaokar, Goldwin Smith Professor of Physics Emeritus at Cornell University’s Laboratory of Atomic and Solid State Physics in Ithaca New York, is the 2015 John Bardeen Prize recipient. Ambegaokar will accept the award on August 24 during the 11th International Conference on Materials and Mechanisms of Superconductivity, to be held in Geneva, Switzerland.
Theoretical condensed-matter physicist Vinay Ambegaokar has been selected for the 2015 John Bardeen Prize, in recognition of his theoretical research that substantially advanced our understanding of certain unique and fundamental features of superconductivity. Ambegaokar is Goldwin Smith Professor of Physics Emeritus at Cornell University’s Laboratory of Atomic and Solid State Physics (LASSP) in Ithaca New York.

The award citation reads “for his contributions to the statics, dynamics and kinetics of Josephson junctions and nanowires.”

The prize will be presented to Ambegaokar on August 24 during the 11th International Conference on Materials and Mechanisms of Superconductivity (M2S), in Geneva, Switzerland.

Ambegaokar received his bachelor of science and master of science degrees in mechanical engineering from the Massachusetts Institute of Technology in 1956 and his doctoral degree in theoretical physics from the Carnegie Institute of Technology in 1960. He completed a postdoctoral research appointment at the Bohr Institute in Copenhagen, Denmark prior to joining the faculty at Cornell University in 1962.

In June 1963, just a year after Brian Josephson—then a Cambridge graduate student—applied the BCS theory of superconductivity to predict a phenomenon that would come to be known as the Josephson current, Ambegaokar, with his student Alexis Baratoff, published the first calculation of the temperature dependence of the Josephson current. Interestingly, Ambegaokar had originally set out to disprove Josephson’s calculations—after learning of John Bardeen’s skepticism over the same—but Ambegaokar’s calculations agreed with Josephson’s. Prior to publishing what he found, Ambegaokar corresponded with Bardeen about this finding, and received a letter from Bardeen that called his calculation elegant but incorrect. The Josephson current was experimentally detected later that summer, and Bardeen conceded.

In his long career, Ambegaokar produced seminal theoretical work in condensed matter and low temperature physics,studying homogenous films and wires, metallic films, and quantum dots. Prior to his retirement in July 2007, Ambegaokar enjoyed several visiting appointments, including at Bell Laboratories; North American-Rockwell Science Center; Brookhaven National Laboratory; IBM Watson Research Center; Institute for Theoretical Physics at University of California, Santa Barbara; Collège de France; University of Karlsruhe; NORDITA, Copenhagen; University of Florida; All Souls College, Oxford; Bohr Institute, Copenhagen; and Raman Research Institute, Bangalore.

Among his professional honors, Ambegaokar was selected an Alfred P. Sloan Fellow from 1965 to 1967. In 1971, he received the medal of the University of Helsinki, Finland, after serving as the director of the Research Institute for Theoretical Physics at the university from 1969 to 1971. He was elected a Fellow of the American Physical Society in 1979 and a J. S. Guggenheim Fellow in 1983/84. In 1986, he received the Medal of the Collège de France. He served as a Humboldt Foundation Senior U.S. Scientist in 1986 and 1990.

The John Bardeen Prize was established in 1991 by the organizers of the M2S Conference, in honor of Dr. John Bardeen, the only person to have won the Nobel Prize in Physics twice, first for his part in the invention of the transistor, then for his part in developing the theory of superconductivity. The prize is presented triennially at the conference to a member of the international superconductivity research community for theoretical work that has provided significant insights on the nature of superconductivity and has led to verifiable predictions.

The list of previous distinguished winners includes four Nobel laureates: the late Vitaly L. Ginzburg of the Moscow Technical Institute of Physics; Alexei A. Abrikosov of Argonne National Laboratory; Anthony J. Leggett, the John D. and Catherine T. MacArthur Professor of Physics at the University of Illinois at Urbana-Champaign; and Philip Anderson, the Joseph Henry Professor of Physics, Emeritus, at Princeton University.

The award is sponsored by the Department of Physics of the University of Illinois at Urbana-Champaign and by the Friends of Bardeen.

Recent News

  • In the Media

A second solar farm planned in Savoy will put the University of Illinois in the lead among American universities in terms of solar energy, a top campus proponent says.

The campus is moving ahead with a 55-acre solar farm along the north side of Curtis Road, between First and Neil streets in Savoy, about a mile south of the first 21-acre farm on Windsor Road.

Physics Professor Scott Willenbrock, who recently served as a provost's fellow for sustainability, briefed the Academic Senate about the project Monday, saying it will help the campus meet its goal of generating 5 percent of its energy needs from renewable sources. That target was part of the Illinois Climate Action Plan, known as iCap.

  • Research
  • Biological Physics

A previously unappreciated interaction in the genome turns out to have possibly been one of the driving forces in the emergence of advanced life, billions of years ago.

This discovery began with a curiosity for retrotransposons, known as “jumping genes,” which are DNA sequences that copy and paste themselves within the genome, multiplying rapidly. Nearly half of the human genome is made up of retrotransposons, but bacteria hardly have them at all.

Nigel Goldenfeld, Swanlund Endowed Chair of Physics and leader of the Biocomplexity research theme at the IGB, and Thomas Kuhlman, a former physics professor at Illinois who is now at University of California, Riverside, wondered why this is.“We thought a really simple thing to try was to just take one (retrotransposon) out of my genome and put it into the bacteria just to see what would happen,” Kuhlman said. “And it turned out to be really quite interesting.”

  • Research
  • High Energy Physics
  • Particle Physics
The lead ion run is under way. On 8 November at 21:19, the four experiments at the Large Hadron Collider - ALICE, ATLAS, CMS and LHCb - recorded their first collisions of lead nuclei since 2015. For three weeks and a half, the world’s biggest accelerator will collide these nuclei, comprising 208 protons and neutrons, at an energy of 5.02 teraelectronvolts (TeV) for each colliding pair of nucleons (protons and neutrons). This will be the fourth run of this kind since the collider began operation. In 2013 and 2016, lead ions were collided with protons in the LHC.

Anne Sickles is co-convener of the ATLAS Heavy Ion Working Group, which will use these data.
  • Outreach
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics
  • Quantum Physics
  • Quantum Computing

A two-day summit in Chicago taking place November 8 and 9 has brought together leading experts in quantum information science to advance U.S. efforts in what’s been called the next technological “space race”—and to position Illinois at the forefront of that race. The inaugural Chicago Quantum Summit, hosted by the Chicago Quantum Exchange, includes high-level representation from Microsoft, IBM, Alphabet Inc.’s Google, the National Science Foundation, the U.S. Department of Energy, the U.S. Department of Defense, and the National Institute of Standards and Technology.

The University of Illinois at Urbana-Champaign recently joined the Chicago Quantum Exchange as a core member, making it one of the largest quantum information science (QIS) collaborations in the world. The exchange was formed last year as an alliance between the University of Chicago and the two Illinois-based national laboratories, Argonne and Fermilab.

Representing the U of I at the summit are physics professors Brian DeMarco, Paul Kwiat, and Dale Van Harlingen, who are key players in the planned Illinois Quantum Information Science and Technology Center (IQUIST) on the U of I campus. The U of I news bureau announced last week the university’s $15-million commitment to the new center, which will form a collaboration of physicists, engineers, and computer scientists to develop new algorithms, materials, and devices to advance QIS.