Timothy Stelzer receives Rose Award for Excellence in Teaching

Siv Schwink
4/27/2015

Associate Professor of Physics Timothy Stelzer
Associate Professor of Physics Timothy Stelzer
Timothy Stelzer has received the 2015 Rose Award for Excellence in Teaching from the College of Engineering at the University of Illinois at Urbana Champaign. The award was presented at a College of Engineering faculty awards ceremony on Monday, April 27, 2015.

Stelzer, a high-energy particle theorist who has developed software now in use by particle physicists around the globe, and is a founding member of the Physics Education Research Group at the University of Illinois. Stelzer is a strong proponent of the importance of evidence-based teaching methodologies and the effective use of technology in student learning..

Head of Department and Professor Dale Van Harlingen comments, “There is indeed not an award at any level that includes the words 'teaching excellence' for which Tim should not be a leading candidate--his impact on understanding how students learn physics and how we should teach it has been immense at Illinois and beyond. His creativity, intuition, leadership, and staggering amounts of hard work have resulted in greatly improved student outcomes and instructor satisfaction in the calculus-based introductory physics courses that are taken by every engineering student and many others across campus. I can think of no one more worthy than Tim of receiving the Scott Rose Award."

He is a co-developer of smartPhysics, along with PER colleagues Mats Selen and Gary Gladding. smartPhysics is a web-based learning environment for the first year of introductory calculus-based physics (Physics 211 and Physics 212) that includes animated pre-lectures; lectures with content guided by student assessments, peer instruction, and active learning segments; and an online homework system with interactive tutorials and immediate assessments.

This same PER team also developed a wireless student response system, the i>clicker, now in use by over two million students at more than nine hundred institutions.

More recently, the team has developed IOLab, an inexpensive hand-held wireless device that provides a hands-on laboratory experience. It integrates a large collection of sensors (accelerometer, magnetometer, gyroscope, barometer, thermometer, force probe, light intensity, speaker, microphone, EKG, and more) with an online content delivery system, to enable students to explore many key introductory physics concepts on their own.

Stelzer’s efforts to enrich undergraduate physics education with effective methodologies and tools have been widely recognized. In 2014, Stelzer was elected to the chair line of the American Physical Society (APS) Forum on Education (FEd). He is currently serving as chair-elect in this his second of three term years. He will become chair of the forum in April 2016. Stelzer, along with colleagues Selen and Gladding, was selected for the 2013 Excellence in Education Award by the APS. In 2011, Stelzer received the Arnold Nordsieck Award for Excellence in Teaching from Physics Illinois. In 2009, he was named a Distinguished Teacher-Scholar by the University of Illinois. And in 2005, he received the BP Amoco Award for Innovation in Undergraduate Education. Stelzer is regularly included on the University's "Incomplete List of Teachers Ranked as Excellent by Their Students."

Stelzer received his bachelor's degree in physics from St. John's University in 1988 and his Ph.D. in physics from the University of Wisconsin-Madison in 1993. He completed postdoctoral appointments at the Center for Particle Theory at Durham University (UK) and then at the Department of Physics at the University of Illinois. He joined the faculty at Physics Illinois in 1998 as a visiting assistant research professor. He was appointed an assistant research professor in 2000 and associate professor of physics in 2012.

 

Recent News

  • Research
  • Condensed Matter Physics
  • Condensed Matter Experiment
  • Condensed Matter Theory

One of the greatest mysteries in condensed matter physics is the exact relationship between charge order and superconductivity in cuprate superconductors. In superconductors, electrons move freely through the material—there is zero resistance when it’s cooled below its critical temperature. However, the cuprates simultaneously exhibit superconductivity and charge order in patterns of alternating stripes. This is paradoxical in that charge order describes areas of confined electrons. How can superconductivity and charge order coexist?  

Now researchers at the University of Illinois at Urbana-Champaign, collaborating with scientists at the SLAC National Accelerator Laboratory, have shed new light on how these disparate states can exist adjacent to one another. Illinois Physics post-doctoral researcher Matteo Mitrano, Professor Peter Abbamonte, and their team applied a new x-ray scattering technique, time-resolved resonant soft x-ray scattering, taking advantage of the state-of-the-art equipment at SLAC. This method enabled the scientists to probe the striped charge order phase with an unprecedented energy resolution. This is the first time this has been done at an energy scale relevant to superconductivity.

  • Alumni News
  • In the Media

Will Hubin was one of those kids whose wallpaper and bed sheets were covered in airplanes and who loved building model airplanes. By the time he took his first flight in the late 1940s, he was hooked.

Now, he shares his passion for planes with children by taking them for their first flight, at no charge, in his four-seat 2008 Diamond DA-40 aircraft through the local Experimental Aircraft Association’s Young Eagles program.

“It’s a lot of fun and pretty rewarding. Anyone who loves flying likes to introduce others to it. It’s true of anything, any hobbyist. Some will talk constantly but they’re ecstatic,” said Hubin, a retired Kent State University physics professor.

Hubin learned to fly in 1962 when he was earning a doctorate in physics at the University of Illinois and has been flying ever since, adding commercial, instrument, instructor, multi-engine and seaplane ratings.

  • Research
  • Theoretical Biological Physics
  • Biological Physics
  • Biophysics

While watching the production of porous membranes used for DNA sorting and sequencing, University of Illinois researchers wondered how tiny steplike defects formed during fabrication could be used to improve molecule transport. They found that the defects – formed by overlapping layers of membrane – make a big difference in how molecules move along a membrane surface. Instead of trying to fix these flaws, the team set out to use them to help direct molecules into the membrane pores.

Their findings are published in the journal Nature Nanotechnology.

Nanopore membranes have generated interest in biomedical research because they help researchers investigate individual molecules – atom by atom – by pulling them through pores for physical and chemical characterization. This technology could ultimately lead to devices that can quickly sequence DNA, RNA or proteins for personalized medicine.

  • In Memoriam

We are saddened to report that John Robert Schrieffer, Nobel laureate and alumnus of the Department of Physics at the University of Illinois at Urbana-Champaign, passed away on July 27, 2019, in Tallahassee, Florida. He was 88 years old.

Schrieffer was the “S” in the famous BCS theory of superconductivity, one of the towering achievements of 20th century theoretical physics, which he co-developed with his Ph.D advisor Professor John Bardeen and postdoctoral colleague Dr. Leon N. Cooper. At the time that Schrieffer began working with Bardeen and Cooper, superconductivity was regarded as one of the major challenges in physics. Since the discovery of the hallmark feature of superconductivity in 1911—the zero resistance apparently experienced by a current in a metal at temperatures near absolute zero—a long list of famous theoretical physicists had attempted to understand the phenomenon, including Albert Einstein, Niels Bohr, Richard Feynman, Lev Landau, Felix Bloch, Werner Heisenberg and John Bardeen himself (who was awarded the Nobel Prize for his co-invention of the transistor at around the time that Schrieffer began working with him in 1956).