Timothy Stelzer receives Rose Award for Excellence in Teaching

Siv Schwink
4/27/2015

Associate Professor of Physics Timothy Stelzer
Associate Professor of Physics Timothy Stelzer
Timothy Stelzer has received the 2015 Rose Award for Excellence in Teaching from the College of Engineering at the University of Illinois at Urbana Champaign. The award was presented at a College of Engineering faculty awards ceremony on Monday, April 27, 2015.

Stelzer, a high-energy particle theorist who has developed software now in use by particle physicists around the globe, and is a founding member of the Physics Education Research Group at the University of Illinois. Stelzer is a strong proponent of the importance of evidence-based teaching methodologies and the effective use of technology in student learning..

Head of Department and Professor Dale Van Harlingen comments, “There is indeed not an award at any level that includes the words 'teaching excellence' for which Tim should not be a leading candidate--his impact on understanding how students learn physics and how we should teach it has been immense at Illinois and beyond. His creativity, intuition, leadership, and staggering amounts of hard work have resulted in greatly improved student outcomes and instructor satisfaction in the calculus-based introductory physics courses that are taken by every engineering student and many others across campus. I can think of no one more worthy than Tim of receiving the Scott Rose Award."

He is a co-developer of smartPhysics, along with PER colleagues Mats Selen and Gary Gladding. smartPhysics is a web-based learning environment for the first year of introductory calculus-based physics (Physics 211 and Physics 212) that includes animated pre-lectures; lectures with content guided by student assessments, peer instruction, and active learning segments; and an online homework system with interactive tutorials and immediate assessments.

This same PER team also developed a wireless student response system, the i>clicker, now in use by over two million students at more than nine hundred institutions.

More recently, the team has developed IOLab, an inexpensive hand-held wireless device that provides a hands-on laboratory experience. It integrates a large collection of sensors (accelerometer, magnetometer, gyroscope, barometer, thermometer, force probe, light intensity, speaker, microphone, EKG, and more) with an online content delivery system, to enable students to explore many key introductory physics concepts on their own.

Stelzer’s efforts to enrich undergraduate physics education with effective methodologies and tools have been widely recognized. In 2014, Stelzer was elected to the chair line of the American Physical Society (APS) Forum on Education (FEd). He is currently serving as chair-elect in this his second of three term years. He will become chair of the forum in April 2016. Stelzer, along with colleagues Selen and Gladding, was selected for the 2013 Excellence in Education Award by the APS. In 2011, Stelzer received the Arnold Nordsieck Award for Excellence in Teaching from Physics Illinois. In 2009, he was named a Distinguished Teacher-Scholar by the University of Illinois. And in 2005, he received the BP Amoco Award for Innovation in Undergraduate Education. Stelzer is regularly included on the University's "Incomplete List of Teachers Ranked as Excellent by Their Students."

Stelzer received his bachelor's degree in physics from St. John's University in 1988 and his Ph.D. in physics from the University of Wisconsin-Madison in 1993. He completed postdoctoral appointments at the Center for Particle Theory at Durham University (UK) and then at the Department of Physics at the University of Illinois. He joined the faculty at Physics Illinois in 1998 as a visiting assistant research professor. He was appointed an assistant research professor in 2000 and associate professor of physics in 2012.

 

Recent News

  • Diversity, Equity, & Inclusion

The Department of Physics at the University of Illinois at Urbana-Champaign strongly rejects all hateful acts of antisemitism, racism, and discrimination on campus and elsewhere. As scientists, we recognize that acts of intolerance not only create a climate of intimidation and fear, but also stifle both scientific education and scientific progress. Research consistently suggests that as diversity increases, so do productivity, creativity, and innovation in human endeavors. As a department, we are committed to supporting a diverse and inclusive community at this university. We recognize that it is our responsibility to use our privilege as scientists and academics to create and defend an environment where people of all races, religions, ethnicities, genders, and sexual orientations are treated with respect and dignity, and where their contributions are welcomed and encouraged.

  • Research

The rich complexity of turbulence—with its wide range of length and time scales—poses a major challenge to the development of predictive models based on fluid dynamics. Now, four leading physicists will co-lead an international effort to develop a statistical theory of turbulence. If successful, a statistical theory of turbulence would have broad applications, including in aeronautics, geophysics and astrophysics, medicine, and in the efficient transport of fluids through pipelines. Funded by the Simons Foundation, the research project titled “Revisiting the Turbulence Problem Using Statistical Mechanics” will bring together an international team from the US, UK, France, Austria, and Israel to apply novel techniques in non-equilibrium statistical physics to the unresolved problem. University of Illinois at Urbana-Champaign Physics Professor Nigel Goldenfeld is a lead PI on the project.

  • Events
  • Quantum Information Science

Top experts in quantum technology from around the globe will gather at the University of Chicago on Oct. 25 to discuss the future of quantum information science and strategies to build a quantum workforce.

The second annual Chicago Quantum Summit, hosted by the Chicago Quantum Exchange, will engage scientific and government leaders and the industries that will drive the applications of emerging quantum information science. Speakers include technology leaders at IBM, Intel, Boeing, Applied Materials, Toshiba Research Europe, the University of Waterloo, and the University of New South Wales, Australia, and the Quantum Economic Development Consortium.

  • Research
  • Condensed Matter Physics
  • Condensed Matter Theory

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted the fingerprint of an elusive particle: The axion—first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics. Based on predictions from Illinois Physics Professor Barry Bradlyn and Princeton Physics Professor Andrei Bernevig's group, the group of Chemical Physics Professor Claudia Felser at Max Planck in Dresden produced the charge density wave Weyl metalloid (TaSe4)2I and investigated the electrical conduction in this material under the influence of electric and magnetic fields. It was found that the electric current in this material below -11 °C is actually carried by axion particles.