Brian DeMarco selected for Defense Science Study Group

Siv Schwink
5/15/2015

Professor Brian DeMarco
Professor Brian DeMarco
University of Illinois Professor of Physics Brian DeMarco has been selected as a member of the Defense Science Study Group (DSSG), a program that gives leading scientists and engineers a chance to participate in the dialogue on technological challenges and advancements relating to national security. Over the course of the program, DSSG members focus on defense policy, related research and development, and the systems, missions, and operations of the armed forces and the intelligence community.

“I’m excited about this opportunity because it is a chance to learn about how science can inform and impact policy within the federal government and defense agencies,” DeMarco comments. “The DSSG is also a pathway into important organizations such as JASON that can have a broad impact on how we react as a nation to challenges such as energy generation and climate change.”

During the two-year program, DeMarco will meet with other DSSG members for four week-long summer sessions and four three-day sessions, each providing continuing opportunities to learn about the current national security environment and the role science and technology plays within it. In these sessions, DeMarco will get the chance to meet with top-level officials from the Department of Defense (DoD) and other Government organizations, various intelligence agencies, the White House, and Congress. He will also tour the Pentagon’s National Military Command Center, military command facilities and training centers, defense-industry facilities, and national laboratories.

In the second year of the two-year program, DSSG members are asked to write studies, called “think pieces”, on national security issues of their own choosing. The studies allow members to bring their knowledge from an academic environment to bear on issues of particular importance to DoD and to interact with individuals in DoD with related interests.

At the final session of the program, members present the results of their “think pieces.” They are also briefed by representatives of Government study boards, including the Defense Science Board, the Air Force Scientific Advisory Board, the Army Science Board, the Naval Research Advisory Council, the Naval Science Board, JASON, and the Information Science and Technology panel. Representatives from these boards provide an overview of their group’s activities and future projects, and learn how members can participate in the work done by these defense advisory organizations.

DeMarco's research program at the U. of I. focuses on solving outstanding problems in condensed matter physics using ultra-cold atoms trapped in an optical lattice. This approach, of using one quantum system to emulate another, is known as quantum simulation and was first proposed as a potentially revolutionary technique by Richard Feynmann. Current research problems being tackled by his team include the properties of the disordered Bose- and Fermi-Hubbard models, thermometry and cooling in strongly correlated lattice systems, and unique states of matter in spin-dependent optical lattices. DeMarco's group was the first identify the cross-over between quantum tunneling and thermal activation of phase slips in an optical lattice (published in Nature) and the first to realize 3D Anderson localization of matter (published in Science). His group was also the first to trap atoms in a disordered optical lattice in a regime described by the disordered Bose-Hubbard and disordered Fermi-Hubbard model.

The Defense Science Study Group (DSSG) is a program of education and study that introduces outstanding science and engineering professors to the United States’ security challenges and encourages them to apply their talents to these issues. The program, begun in 1986, is directed by the non-profit Institute for Defense Analyses (IDA) and is sponsored by the Defense Advanced Research Projects Agency (DARPA).

 

Recent News

Innovative materials are the foundation of countless breakthrough technologies, and the Illinois Materials Research Science and Engineering Center will develop them. The new center is supported by a six-year, $15.6 million award from the National Science Foundation’s Materials Research Science and Engineering Centers program. It is led by Professor Nadya Mason of Engineering at Illinois’ Department of Physics and its Frederick Seitz Materials Research Laboratory

By building highly interdisciplinary teams of researchers and students, the Illinois Materials Research Center will focus on two types of materials. One group will study new magnetic materials, where ultra-fast magnetic variations could form the basis of smaller, more robust magnetic memory storage. The second group will design materials that can withstand bending and crumpling that typically destroys the properties of those materials and even create materials where crumpling enhances performance.

  • In the Media
  • Condensed Matter Physics
  • Biological Physics

Quanta Magazine recently spoke with Goldenfeld about collective phenomena, expanding the Modern Synthesis model of evolution, and using quantitative and theoretical tools from physics to gain insights into mysteries surrounding early life on Earth and the interactions between cyanobacteria and predatory viruses. A condensed and edited version of that conversation follows.

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

  • Outreach

The most intriguing and relevant science happens at the highest levels of scientific pursuit-at major research universities and laboratories, far above and beyond typical high-school science curriculum. But this summer, 12 rising high school sophomores, juniors, and seniors-eight from Centennial and four from Central High Schools, both in Champaign-had the rare opportunity to partake in cutting-edge scientific research at a leading research institution.

The six-week summer-research Young Scholars Program (YSP) at the University of Illinois at Urbana-Champaign was initiated by members of the Nuclear Physics Laboratory (NPL) group, who soon joined forces with other faculty members in the Department of Physics and with faculty members of the POETS Engineering Research Center.