Black holes: a model for superconductors?

Celia Elliott
3/2/2011

Urbana, Ill.—Black holes are some of the heaviest objects in the universe. Electrons are some of the lightest. Now Professors Robert G. Leigh and Philip Phillips, along with postdoctoral fellow Mohammad Edalati and graduate student Ka Wai Lo, of the University of Illinois have shown how charged black holes can be used to model the behavior of interacting electrons in unconventional superconductors. Their results were published online in Physical Review Letters on March 1 and in Physical Review D on February 25.

“The context of this problem is high-temperature superconductivity,” said Phillips. “One of the great unsolved problems in physics is the origin of superconductivity (a conducting state with zero resistance) in the copper oxide ceramics discovered in 1986.”

Mohammad Edalati, Rob Leigh, and Philip Phillips <br />
Department of Physics, University of Illinois<br />
Photo by Rick Kubetz
Mohammad Edalati, Rob Leigh, and Philip Phillips
Department of Physics, University of Illinois
Photo by Rick Kubetz

Unlike the old superconductors, which were all metals, the new superconductors start off their lives as insulators. In the insulating state of the copper-oxide materials, there are plenty of places for the electrons to hop but nonetheless—no current flows. Such a state of matter, known as a Mott insulator after the pioneering work of Sir Neville Mott, arises from the strong repulsions between the electrons. Although this much is agreed upon, much of the physics of Mott insulators remains unsolved, because there is no exact solution to the Mott problem that is directly applicable to the copper-oxide materials.

Enter string theory—an evolving theoretical effort that seeks to describe the known fundamental forces of nature, including gravity, and their interactions with matter in a single, mathematically complete system.

In string theory, some strongly interacting quantum mechanical systems can be studied by replacing them with classical gravity in a space-time in one higher dimension, a relationship that was first conjectured by string theorist Juan Maldacena some 14 years ago. The conjecture was made possible by thinking about D-branes, important objects in string theory, in two different but equivalent ways. Physical features of the quantum systems, such as temperature, charge density, etc., become properties of black holes in the classical gravity theory.

Since most condensed matter phenomena involve electron physics, Leigh, along with graduate student Juan Jottar, set out to investigate the sorts of interactions that electrons might have in classical gravity theories that arise in string theory. Since the Mott problem is an example of strongly interacting particles, Edalati, Leigh and Philips then asked the question: "Is it possible to devise a theory of gravity that mimics a Mott insulator?” Indeed it is.

The researchers built on Maldacena’s mapping and devised a model for electrons moving in a curved spacetime in the presence of a charged black hole that captures two of the striking features of the normal state of high-temperature superconductors: 1) the presence of a barrier for electron motion in the Mott state, and 2) the strange metal regime in which the electrical resistivity scales as a linear function of temperature, as opposed to the quadratic dependence exhibited by standard metals.

The treatment advanced in the paper published in Physical Review Letters represents the first time a resolution of the Mott problem has been observed in a two-dimensional system, the relevant dimension for the high-temperature superconductors. The next big question that must be addressed is how superconductivity might emerge from the gravity theory of a Mott insulator.

Recent News

  • Diversity

The Department of Physics at the University of Illinois at Urbana-Champaign strongly rejects all hateful acts of antisemitism, racism, and discrimination on campus and elsewhere. As scientists, we recognize that acts of intolerance not only create a climate of intimidation and fear, but also stifle both scientific education and scientific progress. Research consistently suggests that as diversity increases, so do productivity, creativity, and innovation in human endeavors. As a department, we are committed to supporting a diverse and inclusive community at this university. We recognize that it is our responsibility to use our privilege as scientists and academics to create and defend an environment where people of all races, religions, ethnicities, genders, and sexual orientations are treated with respect and dignity, and where their contributions are welcomed and encouraged.

  • Research

The rich complexity of turbulence—with its wide range of length and time scales—poses a major challenge to the development of predictive models based on fluid dynamics. Now, four leading physicists will co-lead an international effort to develop a statistical theory of turbulence. If successful, a statistical theory of turbulence would have broad applications, including in aeronautics, geophysics and astrophysics, medicine, and in the efficient transport of fluids through pipelines. Funded by the Simons Foundation, the research project titled “Revisiting the Turbulence Problem Using Statistical Mechanics” will bring together an international team from the US, UK, France, Austria, and Israel to apply novel techniques in non-equilibrium statistical physics to the unresolved problem. University of Illinois at Urbana-Champaign Physics Professor Nigel Goldenfeld is a lead PI on the project.

  • Events
  • Quantum Information Science

Top experts in quantum technology from around the globe will gather at the University of Chicago on Oct. 25 to discuss the future of quantum information science and strategies to build a quantum workforce.

The second annual Chicago Quantum Summit, hosted by the Chicago Quantum Exchange, will engage scientific and government leaders and the industries that will drive the applications of emerging quantum information science. Speakers include technology leaders at IBM, Intel, Boeing, Applied Materials, Toshiba Research Europe, the University of Waterloo, and the University of New South Wales, Australia, and the Quantum Economic Development Consortium.

  • Research
  • Condensed Matter Physics
  • Condensed Matter Theory

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted the fingerprint of an elusive particle: The axion—first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics. Based on predictions from Illinois Physics Professor Barry Bradlyn and Princeton Physics Professor Andrei Bernevig's group, the group of Chemical Physics Professor Claudia Felser at Max Planck in Dresden produced the charge density wave Weyl metalloid (TaSe4)2I and investigated the electrical conduction in this material under the influence of electric and magnetic fields. It was found that the electric current in this material below -11 °C is actually carried by axion particles.