Black holes: a model for superconductors?

Celia Elliott

Urbana, Ill.—Black holes are some of the heaviest objects in the universe. Electrons are some of the lightest. Now Professors Robert G. Leigh and Philip Phillips, along with postdoctoral fellow Mohammad Edalati and graduate student Ka Wai Lo, of the University of Illinois have shown how charged black holes can be used to model the behavior of interacting electrons in unconventional superconductors. Their results were published online in Physical Review Letters on March 1 and in Physical Review D on February 25.

“The context of this problem is high-temperature superconductivity,” said Phillips. “One of the great unsolved problems in physics is the origin of superconductivity (a conducting state with zero resistance) in the copper oxide ceramics discovered in 1986.”

Mohammad Edalati, Rob Leigh, and Philip Phillips <br />
Department of Physics, University of Illinois<br />
Photo by Rick Kubetz
Mohammad Edalati, Rob Leigh, and Philip Phillips
Department of Physics, University of Illinois
Photo by Rick Kubetz

Unlike the old superconductors, which were all metals, the new superconductors start off their lives as insulators. In the insulating state of the copper-oxide materials, there are plenty of places for the electrons to hop but nonetheless—no current flows. Such a state of matter, known as a Mott insulator after the pioneering work of Sir Neville Mott, arises from the strong repulsions between the electrons. Although this much is agreed upon, much of the physics of Mott insulators remains unsolved, because there is no exact solution to the Mott problem that is directly applicable to the copper-oxide materials.

Enter string theory—an evolving theoretical effort that seeks to describe the known fundamental forces of nature, including gravity, and their interactions with matter in a single, mathematically complete system.

In string theory, some strongly interacting quantum mechanical systems can be studied by replacing them with classical gravity in a space-time in one higher dimension, a relationship that was first conjectured by string theorist Juan Maldacena some 14 years ago. The conjecture was made possible by thinking about D-branes, important objects in string theory, in two different but equivalent ways. Physical features of the quantum systems, such as temperature, charge density, etc., become properties of black holes in the classical gravity theory.

Since most condensed matter phenomena involve electron physics, Leigh, along with graduate student Juan Jottar, set out to investigate the sorts of interactions that electrons might have in classical gravity theories that arise in string theory. Since the Mott problem is an example of strongly interacting particles, Edalati, Leigh and Philips then asked the question: "Is it possible to devise a theory of gravity that mimics a Mott insulator?” Indeed it is.

The researchers built on Maldacena’s mapping and devised a model for electrons moving in a curved spacetime in the presence of a charged black hole that captures two of the striking features of the normal state of high-temperature superconductors: 1) the presence of a barrier for electron motion in the Mott state, and 2) the strange metal regime in which the electrical resistivity scales as a linear function of temperature, as opposed to the quadratic dependence exhibited by standard metals.

The treatment advanced in the paper published in Physical Review Letters represents the first time a resolution of the Mott problem has been observed in a two-dimensional system, the relevant dimension for the high-temperature superconductors. The next big question that must be addressed is how superconductivity might emerge from the gravity theory of a Mott insulator.

Recent News

  • In the Media

In a study reported in the journal Physical Review Physics Education Research, nearly 75% of 471 undergraduate women in physics who responded to a survey offered during a professional conference reported having experienced at least one type of sexual harassment – mostly gender harassment – in their field. U. of I. anthropology professor Kathryn Clancy, a co-author of the report, talked to News Bureau life sciences editor Diana Yates about the study, which also examined the respondents’ feelings of belonging and legitimacy as scientists and scholars.

  • In the Media

“I wanted to quantify the scope of sexual harassment in physics to enable productive discussions that extend beyond personal anecdotes,” explains Lauren Aycock (an American Association for the Advancement of Science Fellow at the U.S. Department of Energy), first author of the paper in PRPER. “This study increases the visibility of the problem without relying on women who have experienced sexual harassment to tell their stories.“

  • In the Media
  • Research
  • High Energy Physics

Sickles is a collaborator on the ATLAS experiment at CERN and studies what happens when particles of light meet inside the Large Hadron Collider. For most of the year, the LHC collides protons, but for about a month each fall, the LHC switches things up and collides heavy atomic nuclei, such as lead ions. The main purpose of these lead collisions is to study a hot and dense subatomic fluid called the quark-gluon plasma, which is harder to create in collisions of protons. But these ion runs also enable scientists to turn the LHC into a new type of machine: a photon-photon collider.

  • Giving

The University of Illinois at Urbana-Champaign’s College of Engineering will become The Grainger College of Engineering, recognizing a new $100 million gift from The Grainger Foundation and more than $300 million in total support, after consultation with the Chancellor’s Joint Advisory Committee on Investment, Licensing, and Naming Rights and pending approval by the University of Illinois Board of Trustees.

The Grainger Foundation’s total support represents the largest amount ever given to a public university to name a college of engineering, with more than $200 million provided in the last six years.

The college will be named in recognition of the contributions of The Grainger Foundation to the excellence of the college and in honor of distinguished alumnus William W. Grainger.