Shapiro wins 2017 Bethe Prize

Siv Schwink

Illinois Professor of Physics and of Astronomy Stuart Shapiro
Illinois Professor of Physics and of Astronomy Stuart Shapiro
University of Illinois Professor of Physics and Astronomy Stuart Shapiro has been selected for the 2017 Hans A. Bethe Prize of the American Physical Society (APS). The Bethe Prize is conferred annually to a scholar who has made outstanding contributions to theory, experiment, or observation in astrophysics, nuclear physics, nuclear astrophysics, or closely related fields.

The citation reads, “For seminal and sustained contributions to understanding physical processes in compact object astrophysics, and advancing numerical relativity.”

Working at the intersection of theoretical astrophysics and numerical relativity, Shapiro has made significant contributions to our theoretical understanding of several long-standing, fundamental problems in astrophysics and general relativity. His broad research interests include the physics of black holes and neutron stars, gravitational collapse, the generation of gravitational waves, relativistic hydrodynamics and magnetohydrodynamics, and the dynamics of large N-body dynamical systems. Using simulations and visualizations generated on supercomputers, Shapiro’s group has shed light on accretion onto compact objects, binary black hole and neutron star inspiral and coalescence, the formation of black holes,  and neutrino and dark matter astrophysics.

Shapiro is perhaps most noted for his ground-breaking simulations on the emitted radiation spectrum from gas accreting onto black holes and neutron stars; the disruption and consumption of stars in star clusters containing a central supermassive black hole; the formation of a supermassive black hole at the center of a galaxy or quasar from the collapse of a relativistic collisionless gas or supermassive star;  and gravitational waves and electromagnetic signals from merging compact binaries.

Long interested in gravitational wave generation, Shapiro and his group provided some of the foundational theoretical work that contributed to the eventual detection and interpretation of gravitational waves by LIGO.

Shapiro is a Fellow of the American Physical Society and of the Institute of Physics in the U.K. He is a recipient of numerous honors, including a first prize in the IBM Supercomputing Competition (1991), the Forefronts of Large-Scale Computation Award (1990), the IBM Supercomputing Competition Award (1990), a John Simon Guggenheim Memorial Foundation Fellowship (1989-90), an Association of American Publishers Award (1984), and an Alfred P. Sloan Research Fellowship (1979).

Shapiro received his bachelor’s degrees in astronomy from Harvard in 1969 and his master’s and doctoral degrees in astrophysical sciences from Princeton University in 1971 and 1973 respectively. He served on the astronomy and physics faculty at Cornell University from 1973 to1995, before joining the faculty in Physics and Astronomy at Illinois as a full professor in 1996.

Recent News

  • Accolades
  • Student News

The BPS Art of Science Image Contest took place again this year, during the 63rd Annual Meeting in Baltimore. The image that won first place was submitted by Angela Barragan, PhD Candidate at the Beckman Institute UIUC. Barragan took some time to provide information about the image and the science it represents.

  • Research
  • Condensed Matter Physics

Researchers at the Paul Scherrer Institute in Switzerland working with scientists at institutions in Germany, Great Britain, Spain, and the US, have investigated a novel crystalline material, a chiral semimetal, exhibiting never-before-seen electronic properties. These include so-called chiral Rarita-Schwinger fermions in the interior and very long, quadruple topological Fermi arcs on the surface. The crystal, synthesized at the Max Planck Institute for Chemical Physics of Solids in Dresden, Germany, comprises aluminum and platinum atoms arranged in a helical pattern, like a spiral staircase. It’s the crystal’s chiral symmetry that hosts exotic emergent electronic properties.

These research findings, published online in the journal Nature Physics on May 6, 2019, validate a 2016 theoretical prediction by University of Illinois Physics Professor Barry Bradlyn (then a postdoc at the Princeton Center for Theoretical Science), et al., in the journal Science (vol. 353, no. 6299, aaf5037). That theoretical work was subsequently rounded out by a team of physicists at Princeton University, in research published in 2017 and 2018.

  • In the Media
  • Outreach

The Beckman Institute for Advanced Science and Technology hosted the premiere of Quantum Rhapsodies on April 10. The performance was a part of the Beckman Institute’s 30th anniversary celebration, and April 10 was the 119th anniversary of the birth of Arnold Beckman. Mr. Beckman, with his late wife, Mabel, donated $40 million to found the Beckman Institute on the University of Illinois campus.

  • In the Media
  • Outreach
  • Quantum Information Science

Such “escape rooms” have become popular in recent years — immersive games where you and your friends (or strangers) search for clues and solve puzzles to defuse a simulated danger before time runs out.

Paul Kwiat, another University of Illinois physicist, is the creator of this particular escape room, which is one of the few, perhaps the only one, filled with puzzles that are based on science.