Shapiro wins 2017 Bethe Prize

Siv Schwink

Illinois Professor of Physics and of Astronomy Stuart Shapiro
Illinois Professor of Physics and of Astronomy Stuart Shapiro
University of Illinois Professor of Physics and Astronomy Stuart Shapiro has been selected for the 2017 Hans A. Bethe Prize of the American Physical Society (APS). The Bethe Prize is conferred annually to a scholar who has made outstanding contributions to theory, experiment, or observation in astrophysics, nuclear physics, nuclear astrophysics, or closely related fields.

The citation reads, “For seminal and sustained contributions to understanding physical processes in compact object astrophysics, and advancing numerical relativity.”

Working at the intersection of theoretical astrophysics and numerical relativity, Shapiro has made significant contributions to our theoretical understanding of several long-standing, fundamental problems in astrophysics and general relativity. His broad research interests include the physics of black holes and neutron stars, gravitational collapse, the generation of gravitational waves, relativistic hydrodynamics and magnetohydrodynamics, and the dynamics of large N-body dynamical systems. Using simulations and visualizations generated on supercomputers, Shapiro’s group has shed light on accretion onto compact objects, binary black hole and neutron star inspiral and coalescence, the formation of black holes,  and neutrino and dark matter astrophysics.

Shapiro is perhaps most noted for his ground-breaking simulations on the emitted radiation spectrum from gas accreting onto black holes and neutron stars; the disruption and consumption of stars in star clusters containing a central supermassive black hole; the formation of a supermassive black hole at the center of a galaxy or quasar from the collapse of a relativistic collisionless gas or supermassive star;  and gravitational waves and electromagnetic signals from merging compact binaries.

Long interested in gravitational wave generation, Shapiro and his group provided some of the foundational theoretical work that contributed to the eventual detection and interpretation of gravitational waves by LIGO.

Shapiro is a Fellow of the American Physical Society and of the Institute of Physics in the U.K. He is a recipient of numerous honors, including a first prize in the IBM Supercomputing Competition (1991), the Forefronts of Large-Scale Computation Award (1990), the IBM Supercomputing Competition Award (1990), a John Simon Guggenheim Memorial Foundation Fellowship (1989-90), an Association of American Publishers Award (1984), and an Alfred P. Sloan Research Fellowship (1979).

Shapiro received his bachelor’s degrees in astronomy from Harvard in 1969 and his master’s and doctoral degrees in astrophysical sciences from Princeton University in 1971 and 1973 respectively. He served on the astronomy and physics faculty at Cornell University from 1973 to1995, before joining the faculty in Physics and Astronomy at Illinois as a full professor in 1996.

Recent News

  • In the Media

Paul Kwiat asks his volunteers to sit inside a small, dark room. As their eyes adjust to the lack of light, each volunteer props his or her head on a chin rest—as you would at an optometrist’s—and gazes with one eye at a dim red cross. On either side of the cross is an optical fiber, positioned to pipe a single photon of light at either the left or the right side of a volunteer’s eye.

Even as he verifies the human eye’s ability to detect single photons, Kwiat, an experimental quantum physicist at the University of Illinois at Urbana–Champaign, and his colleagues are setting their sights higher: to use human vision to probe the very foundations of quantum mechanics, according to a paper they submitted to the preprint server arXiv on June 21.

  • Research
  • Biological Physics

Scientists at the University of Illinois at Urbana-Champaign have predicted new physics governing compression of water under a high-gradient electric field. Physics Professor Aleksei Aksimentiev and his post doctoral researcher James Wilson found that a high electric field applied to a tiny hole in a graphene membrane would compress the water molecules travelling through the pore by 3 percent. The predicted water compression may eventually prove useful in high-precision filtering of biomolecules for biomedical research.

  • Research
  • Biological Physics
  • Biophysics

A new synthetic enzyme, crafted from DNA rather than protein, flips lipid molecules within the cell membrane, triggering a signal pathway that could be harnessed to induce cell death in cancer cells.   

Researchers at University of Illinois at Urbana-Champaign and the University of Cambridge say their lipid-scrambling DNA enzyme is the first in its class to outperform naturally occurring enzymes – and does so by three orders of magnitude. They published their findings in the journal Nature Communications.

  • Accolades
  • High Energy Physics

Assistant Professor of Physics Thomas Faulkner has been selected by the US Department of Energy (DOE) Office of Science to receive an Early Career Award. The DOE Early Career Research Program, now in its ninth year, provides award recipients with significant funding over a five year period. Faulkner is among 84 scientists at U.S. universities and DOE-supported national laboratories to be selected this year. He is one of only two scientists at the University of Illinois at Urbana-Champaign to receive the honor this year.

The Early Career Award recognizes promising scientists within 10 years of having earned their doctoral degrees, working in research areas supported by the DOE Office of Science. Faulkner’s research proposal in theoretical high-energy physics is entitled, “New perspectives on QFT and gravity from quantum entanglement.”