Physics Illinois alumnus M. George Craford awarded IEEE Edison Medal

Siv Schwink
11/28/2016 11:51 AM

Physics Illinois alumnus M. George Craford awarded IEEE Edison Medal
Physics Illinois alumnus M. George Craford awarded IEEE Edison Medal
Physics Illinois alumnus M. George Craford has been selected for the IEEE Edison Medal of the Institute of Electrical and Electronics Engineers. The medal is awarded annually in recognition of a career of meritorious achievement in electrical science, electrical engineering, or the electrical arts. The citation reads, “for a lifetime of pioneering contributions to the development and commercialization of visible LED materials and devices.”

Craford is best known for his invention of the first yellow light emitting diode (LED). During his career, he developed and commercialized the technologies yielding the highest-brightness yellow, amber, and red LEDs as well as world-class blue LEDs. He is a pioneer whose contributions to his field are lasting.

Raised in a farming community in Iowa, Craford received a master of science degree (1963) and a doctoral degree (1967) from Physics Illinois. As a student, he worked under Nick Holonyak, Jr., the inventor of the first visible direct band gap LED, an invention that enabled the evolution of the high performance LED technology now in use worldwide.

Craford began his professional career in 1967 at the Monsanto Chemical Company, where he quickly became the leader of the LED technology group for what was at that time the largest LED company in the world. He led the development of an improved new GaAsP:N LED technology in 1971 that yielded the first yellow LED and increased the performance of red LED’s by an order of magnitude. It became the dominant high performance LED technology for more than a decade.

In 1974, Craford was appointed Director of Technology for the Monsanto Electronics Division. When Monsanto sold its LED and compound semiconductor business in 1979, Craford took a position at Hewlett Packard, where he served as Technology Manager for the Optoelectronic Division, with the responsibility of maintaining leadership in LED technology. In 1990, Craford’s team pioneered the development of another new LED technology that utilized the quaternary compound AlInGaP and yielded the world’s highest performance red, orange, and amber LEDs. The first LED with performance of 100 lumens per watt was demonstrated. Devices of this type continue to be used in traffic lights, automobiles, and many other applications.

In 1999, Craford became Chief Technology Officer of Lumileds Lighting, a joint venture between Agilent and Philips. The first high power white LEDs, with inputs of one watt and higher, were developed at Lumileds Lighting and are now widely used in many types of lighting, including general illumination, automobile taillights, and cellphone flashes. Lumileds Lighting, which later became Philips Lumileds Lighting Company, today maintains its position at the forefront of LED technology.

Craford is currently Solid State Lighting Fellow at Philips Lumileds Lighting Company. He is a member of the National Academy of Engineering and a Fellow of the IEEE. He is the recipient of many honors, including the 2002 National Medal of Technology, the University of Illinois Alumni Distinguished Service Award, the IEEE Morris N. Liebmann Award, the IEEE Third Millennium Medal, the Optical Society of America Nick Holonyak Jr. Award, the International Symposium on Compound Semiconductors Welker Award, the Materials Research Society MRS medal, the Electrochemical Society Electronic Division Award, the Economist Innovation Award, the Strategies in Light LED Pioneer Award, and the International SSL Alliance Global Solid State Lighting Development Award. In 2014, he was inducted to the Engineering at Illinois Hall of Fame.

The IEEE Edison Medal will be presented to Craford at the IEEE Honors Ceremony in San Francisco on May 25, 2017, during the IEEE Vision, Innovation, and Challenges Summit. The award includes a gold medal, a bronze replica, a certificate, and an honorarium.

About the medal

On October 21, 1879, Thomas Alva Edison succeeded in producing the first practical incandescent electric light bulb—the beginning of modern illumination. Twenty-five years later, on February 11, 1904, a group of Edison's friends and associates created a medal in his name to commemorate the achievements of a quarter of a century in the art of electric lighting. In their words, "The Edison Medal should, during the centuries to come, serve as an honorable incentive to scientists, engineers, and artisans to maintain by their works the high standard of accomplishment set by the illustrious man whose name and feats shall live while human intelligence continues to inhabit the world."

Four years later, the Institute of Electrical Engineers entered into an agreement with the founders to award the medal, adding IEEE to its designation. The IEEE Edison Medal has been presented annually since 1909 to a single recipient who, like Edison, has applied his imagination and desire to achieve a better standard of living through electrical advancements has bridged the gap between imagination and realization.

Recent News

  • Research

Developing a superconducting computer that would perform computations at high speed without heat dissipation has been the goal of several research and development initiatives since the 1950s. Such a computer would require a fraction of the energy current supercomputers consume, and would be many times faster and more powerful. Despite promising advances in this direction over the last 65 years, substantial obstacles remain, including in developing miniaturized low-dissipation memory.

Researchers at the University of Illinois at Urbana-Champaign have developed a new nanoscale memory cell that holds tremendous promise for successful integration with superconducting processors. The new technology, created by Professor of Physics Alexey Bezryadin and graduate student Andrew Murphy, in collaboration with Dmitri Averin, a professor of theoretical physics at State University of New York at Stony Brook, provides stable memory at a smaller size than other proposed memory devices.

  • In the Media

As NASA prepares for this evening’s launch of the NICER space astronomy mission, Emeritus Professor of Physics Fred Lamb of the University of Illinois at Urbana-Champaign, is at the Kennedy Space Center, as a member of three of the mission’s Science Working Groups. The launch from the world-famous Pad 39A is scheduled for 5:55 P.M. EST.

Lamb, who continues to hold a post-retirement research appointment at Physics Illinois, is a world-recognized expert on the U.S. ground-based missile defense system. He served as co-chair of the American Physical Society’s Study Group on Boost-Phase Intercept for National Missile Defense, which published its report in July 2003. He has been fielding questions from the media on Tuesday's successful interception of an interncontinental ballistic missile during the latest test of its ground-based intercept system, as reported by the U.S. Missile Defense Agency.

Tuesday's ground-based interceptor launched from Vandenberg Air Force Base in California just after 3:30 p.m. EST. A little more than one hour later, the Pentagon confirmed it had successfully collided with an ICBM-class target over the Pacific Ocean, which had been launched from the Ronald Reagan Ballistic Missile Defense Test Site on Kwajalein Atoll in the Marshall Islands, 4,200 miles away.

In this Q&A, Lamb briefly turns his attention away from the pending NICER launch to answer a few questions on the current status of the U.S. Ground-Based Missile Defense System.

  • Research
  • Particle Physics
  • High Energy Physics

What do you get when you revive a beautiful 20-year-old physics machine, carefully transport it 3,200 miles over land and sea to its new home, and then use it to probe strange happenings in a magnetic field? Hopefully you get new insights into the elementary particles that make up everything.

The Muon g-2 experiment, located at the U.S. Department of Energy’s (DOE) Fermi National Accelerator Laboratory, has begun its quest for those insights. This month, the 50-foot-wide superconducting electromagnet at the center of the experiment saw its first beam of muon particles from Fermilab’s accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists’ picture of the universe and how it works.

  • Accolades
  • Alumni News

Congratulations to Physics Illinois alumnus M. George Craford on being presented today with the IEEE Edison Medal of the Institute of Electrical and Electronics Engineers. The medal is awarded annually in recognition of a career of meritorious achievement in electrical science, electrical engineering, or the electrical arts. The citation reads, “for a lifetime of pioneering contributions to the development and commercialization of visible LED materials and devices.”

 

Craford is best known for his invention of the first yellow light emitting diode (LED). During his career, he developed and commercialized the technologies yielding the highest-brightness yellow, amber, and red LEDs as well as world-class blue LEDs. He is a pioneer whose contributions to his field are lasting.