Physics Illinois alumnus M. George Craford awarded IEEE Edison Medal

Siv Schwink

Physics Illinois alumnus M. George Craford awarded IEEE Edison Medal
Physics Illinois alumnus M. George Craford awarded IEEE Edison Medal
Physics Illinois alumnus M. George Craford has been selected for the IEEE Edison Medal of the Institute of Electrical and Electronics Engineers. The medal is awarded annually in recognition of a career of meritorious achievement in electrical science, electrical engineering, or the electrical arts. The citation reads, “for a lifetime of pioneering contributions to the development and commercialization of visible LED materials and devices.”

Craford is best known for his invention of the first yellow light emitting diode (LED). During his career, he developed and commercialized the technologies yielding the highest-brightness yellow, amber, and red LEDs as well as world-class blue LEDs. He is a pioneer whose contributions to his field are lasting.

Raised in a farming community in Iowa, Craford received a master of science degree (1963) and a doctoral degree (1967) from Physics Illinois. As a student, he worked under Nick Holonyak, Jr., the inventor of the first visible direct band gap LED, an invention that enabled the evolution of the high performance LED technology now in use worldwide.

Craford began his professional career in 1967 at the Monsanto Chemical Company, where he quickly became the leader of the LED technology group for what was at that time the largest LED company in the world. He led the development of an improved new GaAsP:N LED technology in 1971 that yielded the first yellow LED and increased the performance of red LED’s by an order of magnitude. It became the dominant high performance LED technology for more than a decade.

In 1974, Craford was appointed Director of Technology for the Monsanto Electronics Division. When Monsanto sold its LED and compound semiconductor business in 1979, Craford took a position at Hewlett Packard, where he served as Technology Manager for the Optoelectronic Division, with the responsibility of maintaining leadership in LED technology. In 1990, Craford’s team pioneered the development of another new LED technology that utilized the quaternary compound AlInGaP and yielded the world’s highest performance red, orange, and amber LEDs. The first LED with performance of 100 lumens per watt was demonstrated. Devices of this type continue to be used in traffic lights, automobiles, and many other applications.

In 1999, Craford became Chief Technology Officer of Lumileds Lighting, a joint venture between Agilent and Philips. The first high power white LEDs, with inputs of one watt and higher, were developed at Lumileds Lighting and are now widely used in many types of lighting, including general illumination, automobile taillights, and cellphone flashes. Lumileds Lighting, which later became Philips Lumileds Lighting Company, today maintains its position at the forefront of LED technology.

Craford is currently Solid State Lighting Fellow at Philips Lumileds Lighting Company. He is a member of the National Academy of Engineering and a Fellow of the IEEE. He is the recipient of many honors, including the 2002 National Medal of Technology, the University of Illinois Alumni Distinguished Service Award, the IEEE Morris N. Liebmann Award, the IEEE Third Millennium Medal, the Optical Society of America Nick Holonyak Jr. Award, the International Symposium on Compound Semiconductors Welker Award, the Materials Research Society MRS medal, the Electrochemical Society Electronic Division Award, the Economist Innovation Award, the Strategies in Light LED Pioneer Award, and the International SSL Alliance Global Solid State Lighting Development Award. In 2014, he was inducted to the Engineering at Illinois Hall of Fame.

The IEEE Edison Medal will be presented to Craford at the IEEE Honors Ceremony in San Francisco on May 25, 2017, during the IEEE Vision, Innovation, and Challenges Summit. The award includes a gold medal, a bronze replica, a certificate, and an honorarium.

About the medal

On October 21, 1879, Thomas Alva Edison succeeded in producing the first practical incandescent electric light bulb—the beginning of modern illumination. Twenty-five years later, on February 11, 1904, a group of Edison's friends and associates created a medal in his name to commemorate the achievements of a quarter of a century in the art of electric lighting. In their words, "The Edison Medal should, during the centuries to come, serve as an honorable incentive to scientists, engineers, and artisans to maintain by their works the high standard of accomplishment set by the illustrious man whose name and feats shall live while human intelligence continues to inhabit the world."

Four years later, the Institute of Electrical Engineers entered into an agreement with the founders to award the medal, adding IEEE to its designation. The IEEE Edison Medal has been presented annually since 1909 to a single recipient who, like Edison, has applied his imagination and desire to achieve a better standard of living through electrical advancements has bridged the gap between imagination and realization.

Recent News

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

  • Outreach

The most intriguing and relevant science happens at the highest levels of scientific pursuit-at major research universities and laboratories, far above and beyond typical high-school science curriculum. But this summer, 12 rising high school sophomores, juniors, and seniors-eight from Centennial and four from Central High Schools, both in Champaign-had the rare opportunity to partake in cutting-edge scientific research at a leading research institution.

The six-week summer-research Young Scholars Program (YSP) at the University of Illinois at Urbana-Champaign was initiated by members of the Nuclear Physics Laboratory (NPL) group, who soon joined forces with other faculty members in the Department of Physics and with faculty members of the POETS Engineering Research Center.

Imagine planting a single seed and, with great precision, being able to predict the exact height of the tree that grows from it. Now imagine traveling to the future and snapping photographic proof that you were right.

If you think of the seed as the early universe, and the tree as the universe the way it looks now, you have an idea of what the Dark Energy Survey (DES) collaboration has just done. In a presentation today at the American Physical Society Division of Particles and Fields meeting at the U.S. Department of Energy’s (DOE) Fermi National Accelerator Laboratory, DES scientists will unveil the most accurate measurement ever made of the present large-scale structure of the universe.

These measurements of the amount and “clumpiness” (or distribution) of dark matter in the present-day cosmos were made with a precision that, for the first time, rivals that of inferences from the early universe by the European Space Agency’s orbiting Planck observatory. The new DES result (the tree, in the above metaphor) is close to “forecasts” made from the Planck measurements of the distant past (the seed), allowing scientists to understand more about the ways the universe has evolved over 14 billion years.

“This result is beyond exciting,” said Scott Dodelson of Fermilab, one of the lead scientists on this result. “For the first time, we’re able to see the current structure of the universe with the same clarity that we can see its infancy, and we can follow the threads from one to the other, confirming many predictions along the way.”

It took two years on a supercomputer to simulate 1.2 microseconds in the life of the HIV capsid, a protein cage that shuttles the HIV virus to the nucleus of a human cell. The 64-million-atom simulation offers new insights into how the virus senses its environment and completes its infective cycle.

The findings are reported in the journal Nature Communications.