Hooberman, Shelton selected for DOE Early Career Awards

Siv Schwink
8/15/2017

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

Assistant Professor Benjamin Hooberman
Assistant Professor Benjamin Hooberman
Hooberman is an experimental high energy particle physicist working with the ATLAS experiment, a large-scale collaboration of more than 3,000 scientists at the Large Hadron Collider (LHC) particle accelerator at CERN, Switzerland. In his research, he mines huge quantities of data obtained from millions of particle collisions, to uncover new physics beyond the standard model. His research group also contributed to the development of an upgraded ATLAS charged particle tracking detector and trigger systems, having performed extensive simulation studies to help guide the new design.

Hooberman specializes in the search for supersymmetric particles and evidence of extra dimensions of spacetime. In this same context, he is also working on one of the greatest puzzles in physics today—dark matter. The standard model, our best working model of the universe, falls short of explaining dark matter. Understanding the nature of physics beyond the standard model and its potential connection to dark matter is among the highest priorities of the LHC physics program and the focus of Hooberman’s research. A discovery would transform our understanding of the composition and fundamental laws of the universe.

Hooberman received a bachelor's degree in physics from Columbia University in 2005 and a doctoral degree in physics from the University of California, Berkeley in 2009. From 2009 to 2014, he held a postdoctoral appointment at Fermi National Accelerator Laboratory, working as a member of the CMS collaboration at the LHC. He joined the faculty of Physics Illinois in 2014. He is a recipient of the CMS/LHC Physics Center Fellowship from Fermi Lab in 2013.

Assistant Professor Jessie Shelton
Assistant Professor Jessie Shelton
Shelton is a theoretical high energy particle physicist. Her research focuses on a broad range of unsolved problems in particle physics beyond the standard model. She uses the formal aspects of particle phenomenology, coupled with big data from particle accelerators, to generate mathematical models of the nature of matter and dark matter. She is particularly interested in dark matter, top quarks, and the Higgs boson. Her recent work has also focused on the physics of black-hole p-wave dark matter annihilation.

Shelton received a bachelor’s degree in physics from Princeton University in 2000 and a doctoral degree in physics from MIT in 2006. She held postdoctoral appointments at Rutgers, Yale, and Harvard before joining the faculty at Physics Illinois in 2014. She is the recipient of MIT’s Andrew M. Lockett Award for Excellence in Theoretical Physics (2006) and the LHC Theory Initiative Travel and Computing Award (2011).

 

Recent News

Innovative materials are the foundation of countless breakthrough technologies, and the Illinois Materials Research Science and Engineering Center will develop them. The new center is supported by a six-year, $15.6 million award from the National Science Foundation’s Materials Research Science and Engineering Centers program. It is led by Professor Nadya Mason of Engineering at Illinois’ Department of Physics and its Frederick Seitz Materials Research Laboratory

By building highly interdisciplinary teams of researchers and students, the Illinois Materials Research Center will focus on two types of materials. One group will study new magnetic materials, where ultra-fast magnetic variations could form the basis of smaller, more robust magnetic memory storage. The second group will design materials that can withstand bending and crumpling that typically destroys the properties of those materials and even create materials where crumpling enhances performance.

  • In the Media
  • Condensed Matter Physics
  • Biological Physics

Quanta Magazine recently spoke with Goldenfeld about collective phenomena, expanding the Modern Synthesis model of evolution, and using quantitative and theoretical tools from physics to gain insights into mysteries surrounding early life on Earth and the interactions between cyanobacteria and predatory viruses. A condensed and edited version of that conversation follows.

Assistant Professors Jessie Shelton and Benjamin Hooberman of the Department of Physics at the University of Illinois Urbana-Champaign have been selected for 2017 DOE Early Career Awards. They are among 65 early-career scientists nationwide to receive the five-year awards through the Department of Energy Office of Science’s Early Career Research Program, now in its second year. According to the DOE, this year’s awardees were selected from a pool of about 1,150 applicants, working in research areas identified by the DOE as high priorities for the nation.

  • Outreach

The most intriguing and relevant science happens at the highest levels of scientific pursuit-at major research universities and laboratories, far above and beyond typical high-school science curriculum. But this summer, 12 rising high school sophomores, juniors, and seniors-eight from Centennial and four from Central High Schools, both in Champaign-had the rare opportunity to partake in cutting-edge scientific research at a leading research institution.

The six-week summer-research Young Scholars Program (YSP) at the University of Illinois at Urbana-Champaign was initiated by members of the Nuclear Physics Laboratory (NPL) group, who soon joined forces with other faculty members in the Department of Physics and with faculty members of the POETS Engineering Research Center.