Gadway selected for U.S. Air Force Young Investigator Research Program

Siv Schwink

Assistant Professor Bryce Gadway meets with graduate students in his laboratory in the Loomis Laboratory of Physics.
Assistant Professor Bryce Gadway meets with graduate students in his laboratory in the Loomis Laboratory of Physics.
Assistant Professor Bryce Gadway of the Department of Physics at the University of Illinois Urbana-Champaign has been selected for the 2017 U.S. Air Force Young Investigator Research Program. Gadway is among 43 early-career scientists and engineers nationwide to receive this three-year award of $450,000. U.S. Air Force Young Investigators are selected based on demonstrated exceptional ability and promise for conducting basic research in scientific and engineering areas identified as strategic to the US Air Force mission.

Gadway is an atomic, molecular, and optical (AMO) experimentalist, who has developed novel quantum simulation techniques for probing electronic transport in condensed matter systems. Quantum-simulation is an approach to gaining insight into the behavior of complex systems by emulating them with an ideal, model setup. Gadway’s group uses finely tuned lasers to trap ultracold atoms about a billion times colder than room temperature, creating a momentum-space lattice that replicates the properties and behaviors of electronic transport in real materials. AMO experimentation allows greater control over experimental parameters than could be achieved in real materials: these simulated materials are without defect, and individual variables can be finely tuned.

This award will support a new direction in Gadway’s AMO research: he will be looking at the underlying dynamics of emergent phenomena that arise in complex systems of many interacting quantum particles.  In other work, Gadway and his team have demonstrated the effectiveness of their unique “bottom-up approach” to Hamiltonian engineering, through novel explorations into topological and disordered lattice systems. In this new work, Gadway’s team will refine their approach and study the role of strong interactions in topological and disordered atomic fluids.

Gadway received a bachelor’s degree in physics from Colgate University in 2007 and a doctoral degree in physics from Stony Brook University in 2012. He was a National Research Council postdoctoral research fellow, completing his postdoctoral work at JILA in Boulder, CO, before joining the faculty at Physics Illinois in 2014. He is the recipient of Stony Brook University’s President's Award to Distinguished Doctoral Students (2013) and of the American Physical Society’s Leroy Apker Award (2007).


Recent News

  • Research
  • High Energy Physics
  • Particle Physics
The lead ion run is under way. On 8 November at 21:19, the four experiments at the Large Hadron Collider - ALICE, ATLAS, CMS and LHCb - recorded their first collisions of lead nuclei since 2015. For three weeks and a half, the world’s biggest accelerator will collide these nuclei, comprising 208 protons and neutrons, at an energy of 5.02 teraelectronvolts (TeV) for each colliding pair of nucleons (protons and neutrons). This will be the fourth run of this kind since the collider began operation. In 2013 and 2016, lead ions were collided with protons in the LHC.

Anne Sickles is co-convener of the ATLAS Heavy Ion Working Group, which will use these data.
  • Outreach
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics
  • Quantum Physics
  • Quantum Computing

A two-day summit in Chicago taking place November 8 and 9 has brought together leading experts in quantum information science to advance U.S. efforts in what’s been called the next technological “space race”—and to position Illinois at the forefront of that race. The inaugural Chicago Quantum Summit, hosted by the Chicago Quantum Exchange, includes high-level representation from Microsoft, IBM, Alphabet Inc.’s Google, the National Science Foundation, the U.S. Department of Energy, the U.S. Department of Defense, and the National Institute of Standards and Technology.

The University of Illinois at Urbana-Champaign recently joined the Chicago Quantum Exchange as a core member, making it one of the largest quantum information science (QIS) collaborations in the world. The exchange was formed last year as an alliance between the University of Chicago and the two Illinois-based national laboratories, Argonne and Fermilab.

Representing the U of I at the summit are physics professors Brian DeMarco, Paul Kwiat, and Dale Van Harlingen, who are key players in the planned Illinois Quantum Information Science and Technology Center (IQUIST) on the U of I campus. The U of I news bureau announced last week the university’s $15-million commitment to the new center, which will form a collaboration of physicists, engineers, and computer scientists to develop new algorithms, materials, and devices to advance QIS.

  • Accolades

Loomis Laboratory has been awarded a third-place prize in the Energy Conservation Incentive Program of the University of Illinois at Urbana-Champaign. This program, administered by Facilities and Services, both funds and recognizes efforts to reduce energy consumption through facilities upgrades. A plaque commemorating the award will be mounted in the Walnut Hallway. The award comes with a $26,000 prize for additional energy projects.

  • Research
  • Quantum Information Science
  • Atomic, Molecular, and Optical Physics

The University of Illinois at Urbana-Champaign is making a $15 million investment in the emerging area of quantum information science and engineering, a field poised to revolutionize computing, communication, security, measurement and sensing by utilizing the unique and powerful capabilities of quantum mechanics.