Faulkner receives DOE Early Career Award

Siv Schwink

Assistant Professor Thomas Faulkner
Assistant Professor Thomas Faulkner
Assistant Professor of Physics Thomas Faulkner has been selected by the US Department of Energy (DOE) Office of Science to receive an Early Career Award. The DOE Early Career Research Program, now in its ninth year, provides award recipients with significant funding over a five year period. Faulkner is among 84 scientists at U.S. universities and DOE-supported national laboratories to be selected this year. He is one of only two scientists at the University of Illinois at Urbana-Champaign to receive the honor this year.

The Early Career Award recognizes promising scientists within 10 years of having earned their doctoral degrees, working in research areas supported by the DOE Office of Science. Faulkner’s research proposal in theoretical high-energy physics is entitled, “New perspectives on QFT and gravity from quantum entanglement.”

Faulkner will use the grant to study fundamental aspects of quantum field theory (QFT) and the nature of spacetime and gravity via the patterns of quantum entanglement present in these theories. These patterns will be harnessed to find new constraints on the dynamics of QFT and quantum gravity.

According to Faulkner, these topics find a natural home within the holographic duality, a deep mathematical correspondence discovered in string theory where a gravitational system can be described by a quantum system without gravity. By studying the spatial distribution of quantum correlation in various quantum systems, Faulkner hopes to directly observe the holographic emergence of quantum gravity within this setting and to characterize the spacetime structure that emerges along with it.

With this research, Faulkner aims to shed new light on the thermodynamic nature of gravity and to explore the implications of this paradigm for our understanding of the unification of gravity with quantum mechanics. He intends to develop new tools for studying the structure of quantum entanglement in QFT. In so doing, the powerful constraints satisfied by entanglement and its generalizations will place bounds on the basic data of the QFT. In turn these bounds will be related to causality constraints and quantum energy conditions, which are local and non-local bounds on the energy density for arbitrary out-of-equilibrium states of the QFT.

Faulkner received his bachelor’s degree in physics from the University of Melbourne in 2003. He received his doctoral degree from MIT in 2009 working under Hong Liu and Krishna Rajagopal. His thesis involved using string theory techniques to study QCD under extreme conditions. Faulkner held postdoctoral positions at the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara (2009­2012) and at the Institute for Advanced Studies at Princeton University (2012­2013). Faulkner joined the faculty at Illinois Physics in 2014. Faulkner is a recipient of the Defense Advanced Research Projects Agency (DARPA) Young Faculty Award (2015).

A list of the 84 awardees, their institutions, and titles of their research projects can be viewed at http://science.energy.gov/early-career/.

Recent News

  • In the Media

In a study reported in the journal Physical Review Physics Education Research, nearly 75% of 471 undergraduate women in physics who responded to a survey offered during a professional conference reported having experienced at least one type of sexual harassment – mostly gender harassment – in their field. U. of I. anthropology professor Kathryn Clancy, a co-author of the report, talked to News Bureau life sciences editor Diana Yates about the study, which also examined the respondents’ feelings of belonging and legitimacy as scientists and scholars.

  • In the Media

“I wanted to quantify the scope of sexual harassment in physics to enable productive discussions that extend beyond personal anecdotes,” explains Lauren Aycock (an American Association for the Advancement of Science Fellow at the U.S. Department of Energy), first author of the paper in PRPER. “This study increases the visibility of the problem without relying on women who have experienced sexual harassment to tell their stories.“

  • In the Media
  • Research
  • High Energy Physics

Sickles is a collaborator on the ATLAS experiment at CERN and studies what happens when particles of light meet inside the Large Hadron Collider. For most of the year, the LHC collides protons, but for about a month each fall, the LHC switches things up and collides heavy atomic nuclei, such as lead ions. The main purpose of these lead collisions is to study a hot and dense subatomic fluid called the quark-gluon plasma, which is harder to create in collisions of protons. But these ion runs also enable scientists to turn the LHC into a new type of machine: a photon-photon collider.

  • Giving

The University of Illinois at Urbana-Champaign’s College of Engineering will become The Grainger College of Engineering, recognizing a new $100 million gift from The Grainger Foundation and more than $300 million in total support, after consultation with the Chancellor’s Joint Advisory Committee on Investment, Licensing, and Naming Rights and pending approval by the University of Illinois Board of Trustees.

The Grainger Foundation’s total support represents the largest amount ever given to a public university to name a college of engineering, with more than $200 million provided in the last six years.

The college will be named in recognition of the contributions of The Grainger Foundation to the excellence of the college and in honor of distinguished alumnus William W. Grainger.