DNA enzyme shuffles cell membranes a thousand times faster than its natural counterpart

Liz Ahlberg Touchstone for the Illinois News Bureau
6/21/2018

Postdoctoral researcher Christopher Maffeo and physics professor Aleksei Aksimentiev used the Blue Waters supercomputer to model synthetic DNA enzymes. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
Postdoctoral researcher Christopher Maffeo and physics professor Aleksei Aksimentiev used the Blue Waters supercomputer to model synthetic DNA enzymes. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
A new synthetic enzyme, crafted from DNA rather than protein, flips lipid molecules within the cell membrane, triggering a signal pathway that could be harnessed to induce cell death in cancer cells.   

Researchers at University of Illinois at Urbana-Champaign and the University of Cambridge say their lipid-scrambling DNA enzyme is the first in its class to outperform naturally occurring enzymes – and does so by three orders of magnitude. They published their findings in the journal Nature Communications.

“Cell membranes are lined with a different set of molecules on the inside and outside, and cells devote a lot of resources to maintaining this,” said study leader Aleksei Aksimentiev, a professor of physics at Illinois. “But at some points in a cell’s life, the asymmetry has to be dismantled. Then the markers that were inside become outside, which sends signals for certain processes, such as cell death. There are enzymes in nature that do that called scramblases. However, in some diseases where scramblases are deficient, this doesn’t happen correctly. Our synthetic scramblase could be an avenue for therapeutics.”

Aksimentiev’s group came upon DNA’s scramblase activity when looking at DNA structures that form pores and channels in cell membranes. They used the Blue Waters supercomputer at the National Center for Supercomputing Applications at Illinois to model the systems at the atomic level. They saw that when certain DNA structures insert into the membrane – in this case, a bundle of eight strands of DNA with cholesterol at the ends of two of the strands – lipids in the membrane around the DNA begin to shuffle between the inner and outer membrane layers.

See an animation at https://youtu.be/kGgTIFYbUko.

To verify the scramblase activity predicted by the computer models, Aksimentiev’s group at Illinois partnered with professor Ulrich Keyser’s group at Cambridge. The Cambridge group synthesized the DNA enzyme and tested it in model membrane bubbles, called vesicles, and then in human breast cancer cells.

A synthetic DNA enzyme inserts into a cell membrane, causing lipids to shuffle between the inner and outer membrane layers.

Image courtesy of Christopher Maffeo
A synthetic DNA enzyme inserts into a cell membrane, causing lipids to shuffle between the inner and outer membrane layers. Image courtesy of Christopher Maffeo
“The results show very conclusively that our DNA nanostructure indeed facilitates rapid lipid scrambling,” said Alexander Ohmann, a graduate student at Cambridge and a co-first author of the paper along with Illinois graduate student Chen-Yu Li. “Most interestingly, the high flipping rate indicated by the molecular dynamics simulations seems to be of the same order of magnitude in experiments: up to a thousand-fold faster than what has previously been shown for natural scramblases.”

On its own, the DNA scramblase produces cell death indiscriminately, Aksimentiev said. The next step is to couple it with targeting systems that specifically seek out certain cell types, a number of which have already been developed for other DNA agents.

“We are also working to make these scramblase structures activated by light or some other stimulus, so they can be activated only on demand and can be turned off,” Aksimentiev said.

“Although we have still a long way to go, this work highlights the enormous potential of synthetic DNA nanostructures with possible applications for personalized drugs and therapeutics for a variety of health conditions in the future,” Ohmann said.

The U.S. National Science Foundation and the National Institutes of Health supported this work.  

Recent News

  • Accolades

Professor and Associate Head for Undergraduate Programs Brian DeMarco has been named a University Scholar by the Office of the Vice President for Academic Affairs at the University of Illinois at Urbana-Champaign. The award recognizes faculty who have made significant contributions in their fields of research and teaching, in line with the university’s reputation for leading-edge innovation and excellence. DeMarco is among 12 faculty members in the University of Illinois System to be selected for this honor in 2018.

  • Research
  • High Energy Physics

Today, the National Science Foundation (NSF) announced its launch of the Institute for Research and Innovation in Software for High-Energy Physics (IRIS-HEP). The $25 million software-focused institute will tackle the unprecedented torrent of data that will come from the high-luminosity running of the Large Hadron Collider (LHC), the world’s most powerful particle accelerator located at CERN near Geneva, Switzerland. The High-Luminosity LHC (HL-LHC) will provide scientists with a unique window into the subatomic world to search for new phenomena and to study the properties of the Higgs boson in great detail. The 2012 discovery at the LHC of the Higgs boson—a particle central to our fundamental theory of nature—led to the Nobel Prize in physics a year later and has provided scientists with a new tool for further discovery.

The HL-LHC will begin operations around 2026, continuing into the 2030s. It will produce more than 1 billion particle collisions every second, from which only a tiny fraction will reveal new science, because the phenomena that physicists want to study have a very low probability per collision of occurring. The HL-LHC’s tenfold increase in luminosity—a measure of the number of particle collisions occurring in a given amount of time—will enable physicists to study familiar processes at an unprecedented level of detail and observe rare new phenomena present in nature.

  • Research
  • Biological Physics

Scientists at the University of Illinois at Urbana-Champaign have produced the most precise picture to date of population dynamics in fluctuating feast-or-famine conditions. Professor Seppe Kuehn, a biological physicist, and his graduate student Jason Merritt found that bacterial population density is a function of both the frequency and the amplitude of nutrient fluctuations. They found that the more frequent the feast cycles and the longer a feast cycle, the more rapid the population recovery from a famine state. This result has important implications for understanding how microbial populations cope with the constant nutrient fluctuations they experience in nature.

  • In the Media
  • High Energy Physics

Six years after discovering the Higgs boson, physicists have observed how the particle decays — a monumental contribution to scientists' understanding of the Standard Model of particle physics and the universe at large, study researchers said.

Excitement swirled in the physics community when, in 2012, physicists discovered the Higgs boson, an elementary particle predicted by the Standard Model that relates to how objects have mass. But this discovery didn't mark the end of Higgs boson exploration. In addition to predicting the existence of Higgs boson particles, the Standard Model posits that 60 percent of the time, a Higgs boson particle will decay into fundamental particles called bottom quarks (b quarks).