Quantum simulation reveals mobility edge in a low-dimensional disordered landscape

Siv Schwink
8/20/2018

University of Illinois Professor of Physics Bryce Gadway (right) and graduate student Fangzhao Alex An build a quantum simulation experiment at Loomis Laboratory of Physics in Urbana, Illinois. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
University of Illinois Professor of Physics Bryce Gadway (right) and graduate student Fangzhao Alex An build a quantum simulation experiment at Loomis Laboratory of Physics in Urbana, Illinois. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
A recent flood of research scholarship on electronic transport in low-dimensional (2D or 1D) materials like graphene or carbon nanotubes reflects the tremendous potential of these materials to unveil a deeper understanding of the laws that govern the sometimes surprising emergent behavior of electrons. Scientists have probed novel materials like these to uncover the physics of topological superconductivity and topological insulators. But one of the biggest challenges researchers face in studying real materials is the presence of uncontrolled impurities that influence electronic transport.

One way to get around this dirty issue of disorder is to study the same types of physical phenomena in artificial materials that have no natural imperfections. In recent decades, researchers have used neutral atoms moving in pristine crystals formed by laser light to perform quantum simulations to observe physical effects that would be hard to see in real electronic materials.

Now scientists at the University of Illinois at Urbana-Champaign using an innovative quantum simulation technique have made one of the first observations of a mobility edge in a low-dimensional system. Physics professor Bryce Gadway and graduate student Fangzhao Alex An were able to combine a disordered virtual material—in this case a pair of coupled 1D chains—with artificial magnetic fields to explore this phenomenon.

An explains, “The artificial magnetic field we engineered causes the neutral atoms in our experiment to behave like electrons in extremely large magnetic fields, equivalent to applying hundreds of Tesla-level magnets. We were able to vary the strength of our artificial magnetic field to tune the properties of our atoms and strongly modify the observed mobility edge.”

So what exactly is a mobility edge? It’s an energy-dependent insulator-to-conductor transition that occurs in disordered systems—a regime of metallic transport that arises out of a special kind of insulator, called an Anderson insulator. Only two groups have ever observed a mobility edge in 3D, and the first was U of I physics professor Brian DeMarco’s research group in 2011. Importantly, the phenomenon is induced by disorder, and according to the laws of localization physics, a mobility edge, let alone any kind of metallic behavior, should not occur in 2D or 1D materials.

Gadway comments, “This observation is truly noteworthy—this kind of behavior shouldn’t occur in lower dimensional systems with random disorder. There’s a subtlety to realizing it in one or two dimensions that relies on a sort of pseudo-random disorder. There are correlations in the disorder we engineered. It turns out this can allow for a metal-insulator transition.”

Images of the excited-state density distribution in the synthetic lattice for increasing magnetic flux values ∅ (increasing from left to right). Credit: F.A. An, University of Illinois at Urbana-Champaign
Images of the excited-state density distribution in the synthetic lattice for increasing magnetic flux values ∅ (increasing from left to right). Credit: F.A. An, University of Illinois at Urbana-Champaign
Gadway continues, “The type of correlated disorder that we used has some very funny properties. In particular, there is a subtle mathematical argument showing that the metal-insulator transition it allows for is completely independent of energy. It turns out that you have to do a little something extra to allow for a mobility edge to arise. In our case, the extra ingredient was creating the large magnetic fields.”

In this research, the scientists also showed evidence for an even more intriguing kind of mobility edge that occurred in the absence of the artificial magnetic fields. This second type of mobility edge came about due to atom-atom interactions, which caused the higher-energy states to behave more strongly like a metal and the lower-energy states to behave more strongly like an insulator.

These results, published August 18, 2018, in Physical Review X, open up new directions in research.

“Going forward,” Gadway concludes, “the next extension of this work will be to explore the interplay of disorder and large magnetic fields in truly two-dimensional systems, not just two coupled chains. This will build on work we’ve been doing on disordered topological insulators in 1D, extending it to the case of disordered quantum Hall systems in 2D.”

This research was supported by the National Science Foundation. The findings are those of the researchers and not necessarily those of the funding agency.

Recent News

  • Accolades

Professor and Associate Head for Undergraduate Programs Brian DeMarco has been named a University Scholar by the Office of the Vice President for Academic Affairs at the University of Illinois at Urbana-Champaign. The award recognizes faculty who have made significant contributions in their fields of research and teaching, in line with the university’s reputation for leading-edge innovation and excellence. DeMarco is among 12 faculty members in the University of Illinois System to be selected for this honor in 2018.

  • Research
  • High Energy Physics

Today, the National Science Foundation (NSF) announced its launch of the Institute for Research and Innovation in Software for High-Energy Physics (IRIS-HEP). The $25 million software-focused institute will tackle the unprecedented torrent of data that will come from the high-luminosity running of the Large Hadron Collider (LHC), the world’s most powerful particle accelerator located at CERN near Geneva, Switzerland. The High-Luminosity LHC (HL-LHC) will provide scientists with a unique window into the subatomic world to search for new phenomena and to study the properties of the Higgs boson in great detail. The 2012 discovery at the LHC of the Higgs boson—a particle central to our fundamental theory of nature—led to the Nobel Prize in physics a year later and has provided scientists with a new tool for further discovery.

The HL-LHC will begin operations around 2026, continuing into the 2030s. It will produce more than 1 billion particle collisions every second, from which only a tiny fraction will reveal new science, because the phenomena that physicists want to study have a very low probability per collision of occurring. The HL-LHC’s tenfold increase in luminosity—a measure of the number of particle collisions occurring in a given amount of time—will enable physicists to study familiar processes at an unprecedented level of detail and observe rare new phenomena present in nature.

  • Research
  • Biological Physics

Scientists at the University of Illinois at Urbana-Champaign have produced the most precise picture to date of population dynamics in fluctuating feast-or-famine conditions. Professor Seppe Kuehn, a biological physicist, and his graduate student Jason Merritt found that bacterial population density is a function of both the frequency and the amplitude of nutrient fluctuations. They found that the more frequent the feast cycles and the longer a feast cycle, the more rapid the population recovery from a famine state. This result has important implications for understanding how microbial populations cope with the constant nutrient fluctuations they experience in nature.

  • In the Media
  • High Energy Physics

Six years after discovering the Higgs boson, physicists have observed how the particle decays — a monumental contribution to scientists' understanding of the Standard Model of particle physics and the universe at large, study researchers said.

Excitement swirled in the physics community when, in 2012, physicists discovered the Higgs boson, an elementary particle predicted by the Standard Model that relates to how objects have mass. But this discovery didn't mark the end of Higgs boson exploration. In addition to predicting the existence of Higgs boson particles, the Standard Model posits that 60 percent of the time, a Higgs boson particle will decay into fundamental particles called bottom quarks (b quarks).