Nadya Mason elected APS Fellow

Siv Schwink
10/1/2018


Professor of Physics and Director of I-MRSEC Nadya Mason. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
Professor of Physics and Director of I-MRSEC Nadya Mason. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
Professor Nadya Mason has been elected a Fellow of the American Physical Society (APS) “for seminal contributions to the understanding of electronic transport in low dimensional conductors, mesoscopic superconducting systems, and topological quantum materials.”

Mason is an experimental condensed matter physicist who has earned a reputation for her deep-sighted and thorough lines of attack on the most pressing problems in strongly correlated nanoscale physics.

Early in her career, Mason developed innovative new methods to fabricate and control quantum dots in carbon nanotubes. She then turned her focus to the study of correlations in carbon nanotubes and graphene, where her studies opened up new areas of research, most significantly, the non-equilibrium Kondo effect demonstrated in 2006 and the determination of individual superconducting bound states in graphene-based systems in 2011.

More recently, Mason’s work has focused on electronic transport in graphene, nanostructured superconductors and semiconductors, and other novel 1D, 2D, and 3D systems. In 2013, in collaboration with colleagues at Brookhaven National Laboratory, Mason was among the first to measure superconducting surface states in topological insulators that were not confounded by interference from sample impurities. Most recently, with colleagues in the Department of Physics, the Materials Research Laboratory, and the Department of Electrical and Computer Engineering at the U of I, she is the first to experimentally elucidate the origin of finite momentum Cooper pairing in 3D topological insulator Josephson junctions.

Mason serves her scientific community in several roles. She is the director of the Illinois Materials Research Science and Engineering Center (I-MRSEC) on the Urbana campus. Funded by the National Science Foundation with additional support from the University of Illinois at Urbana-Champaign and the Frederick Seitz Materials Research Laboratory, the center is dedicated to performing fundamental, innovative materials research with applications to societal needs and to supporting interdisciplinary education and training of students in materials design.

Mason is also a member of the 2018/19 class of the Defense Science Study Group, a program of education and study in national defense and security challenges directed by the non-profit Institute for Defense Analyses and sponsored by the Defense Advanced Research Projects Agency.

From 2014 through 2017, Mason served as a general councilor of the APS. Mason has long been an avid spokesperson for diversity, inclusion, and equity in the sciences and as such served as chair of the APS Committee on Minorities. She also served as one of the theme leaders for the DOE Basic Energy Sciences cluster on quantum materials and nanoarchitectures (2013).

Mason is the recipient of many recognitions. She is the John Bardeen Faculty Scholar in Physics at the U of I (2014–). She is also the recipient of the U. of I. College of Engineering Dean’s Award for Excellence in Research, the Maria Goeppert Mayer Award of the APS (2012), a Center for Advanced Study Fellowship (2011-2012), the Denice Denton Emerging Leader Award (2009), a Woodrow Wilson Career Enhancement Fellowship (2008-2009), and a National Science Foundation CAREER Award (2007).

Mason received a bachelor’s degree in physics from Harvard University in 1995 and a doctorate in physics from Stanford University in 2001. She returned to Harvard for postdoctoral training, where she was elected junior fellow in the Harvard Society of Fellows. She joined the faculty at Illinois Physics in 2005.

Recent News

  • In the Media

There have been accusations for years that the Major League ball is “juiced,” thus accounting for the increasing power numbers.

MLB officials have categorically denied that, and last year, commissioned a study of the baseball and how it’s produced.

In the landmark 85-page independent report replete with color graphs, algorithms and hypotheses, a group of 10 highly-rated professors and scientists chaired by Alan Nathan determined that the ball is not livelier or “juiced.” Nathan is a professor emeritus of physics from the University of Illinois at Urbana Champaign.

The surge in home runs “seems, instead, to have arisen from a decrease in the ball’s drag properties, which cause it to carry further than previously, given the same set of initial conditions – exit velocity, launch and spray angle, and spin. So, there is indirect evidence that the ball has changed, but we don’t yet know how,” wrote Leonard Mlodinow, in the report’s eight-page executive summary.

  • In the Media

Growing up in Trinidad and Tobago, Kandice Tanner went to a school where she was one of only a dozen girls among 1200 pupils. She had switched from an all-girl school to avoid the distractions of socializing and to take the more advanced math classes offered at the boys’ school. “Being submerged in an all-male environment early on was beneficial to me,” Tanner says. “I felt comfortable with guys, and more important, I knew I could hold my own in a male-dominated environment.”

  • Research
  • Condensed Matter Physics

Illinois Physics Professor Philip Phillips and Math Professor Gabriele La Nave have theorized a new kind of electromagnetism far beyond anything conceivable in classical electromagnetism today, a conjecture that would upend our current understanding of the physical world, from the propagation of light to the quantization of charge. Their revolutionary new theory, which Phillips has dubbed “fractional electromagnetism,” would also solve an intriguing problem that has baffled physicists for decades, elucidating emergent behavior in the “strange metal” of the cuprate superconductors.

This research is published in an upcoming colloquium paper in Reviews of Modern Physics (arXiv:1904.01023v1).

  • Accolades
  • Student News

The BPS Art of Science Image Contest took place again this year, during the 63rd Annual Meeting in Baltimore. The image that won first place was submitted by Angela Barragan, PhD Candidate at the Beckman Institute UIUC. Barragan took some time to provide information about the image and the science it represents.