Nadya Mason elected APS Fellow

Siv Schwink

Professor of Physics and Director of I-MRSEC Nadya Mason. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
Professor of Physics and Director of I-MRSEC Nadya Mason. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
Professor Nadya Mason has been elected a Fellow of the American Physical Society (APS) “for seminal contributions to the understanding of electronic transport in low dimensional conductors, mesoscopic superconducting systems, and topological quantum materials.”

Mason is an experimental condensed matter physicist who has earned a reputation for her deep-sighted and thorough lines of attack on the most pressing problems in strongly correlated nanoscale physics.

Early in her career, Mason developed innovative new methods to fabricate and control quantum dots in carbon nanotubes. She then turned her focus to the study of correlations in carbon nanotubes and graphene, where her studies opened up new areas of research, most significantly, the non-equilibrium Kondo effect demonstrated in 2006 and the determination of individual superconducting bound states in graphene-based systems in 2011.

More recently, Mason’s work has focused on electronic transport in graphene, nanostructured superconductors and semiconductors, and other novel 1D, 2D, and 3D systems. In 2013, in collaboration with colleagues at Brookhaven National Laboratory, Mason was among the first to measure superconducting surface states in topological insulators that were not confounded by interference from sample impurities. Most recently, with colleagues in the Department of Physics, the Materials Research Laboratory, and the Department of Electrical and Computer Engineering at the U of I, she is the first to experimentally elucidate the origin of finite momentum Cooper pairing in 3D topological insulator Josephson junctions.

Mason serves her scientific community in several roles. She is the director of the Illinois Materials Research Science and Engineering Center (I-MRSEC) on the Urbana campus. Funded by the National Science Foundation with additional support from the University of Illinois at Urbana-Champaign and the Frederick Seitz Materials Research Laboratory, the center is dedicated to performing fundamental, innovative materials research with applications to societal needs and to supporting interdisciplinary education and training of students in materials design.

Mason is also a member of the 2018/19 class of the Defense Science Study Group, a program of education and study in national defense and security challenges directed by the non-profit Institute for Defense Analyses and sponsored by the Defense Advanced Research Projects Agency.

From 2014 through 2017, Mason served as a general councilor of the APS. Mason has long been an avid spokesperson for diversity, inclusion, and equity in the sciences and as such served as chair of the APS Committee on Minorities. She also served as one of the theme leaders for the DOE Basic Energy Sciences cluster on quantum materials and nanoarchitectures (2013).

Mason is the recipient of many recognitions. She is the John Bardeen Faculty Scholar in Physics at the U of I (2014–). She is also the recipient of the U. of I. College of Engineering Dean’s Award for Excellence in Research, the Maria Goeppert Mayer Award of the APS (2012), a Center for Advanced Study Fellowship (2011-2012), the Denice Denton Emerging Leader Award (2009), a Woodrow Wilson Career Enhancement Fellowship (2008-2009), and a National Science Foundation CAREER Award (2007).

Mason received a bachelor’s degree in physics from Harvard University in 1995 and a doctorate in physics from Stanford University in 2001. She returned to Harvard for postdoctoral training, where she was elected junior fellow in the Harvard Society of Fellows. She joined the faculty at Illinois Physics in 2005.

Recent News

  • In the Media

Albert Einstein was right again. More than 100 years ago, his calculations suggested that when too much energy or matter is concentrated in one place, it will collapse in on itself and turn into a dark vortex of nothingness. Physicists found evidence to support Einstein’s black hole concept, but they’d never observed one directly. In 2017, 200-plus scientists affiliated with more than 60 institutions set out to change that, using eight global radio observatories to chart the sky for 10 days. In April they released their findings, which included an image of a dark circle surrounded by a fiery doughnut (the galaxy Messier 87), 55 million light years away and 6.5 billion times more massive than our sun. “We have seen what we thought was unseeable,” said Shep Doeleman, leader of what came to be known as the Event Horizon Telescope team. The team’s name refers to the edge of a black hole, the point beyond which light and matter cannot escape. In some ways, the first picture of a black hole is also the first picture of nothing.

Institute for Condensed Matter Theory in the Department of Physics at the University of Illinois at Urbana-Champaign has recently received a five-year grant of over $1 million from the Gordon and Betty Moore Foundation. The grant is part of the Gordon and Betty Moore Foundation’s Emergent Phenomena in Quantum Systems (EPiQS) Initiative, which strives to catalyze major discoveries in the field of quantum materials—solids and engineered structures characterized by novel quantum phases of matter and exotic cooperative behaviors of electrons. This is the second 5-year EPiQS grant awarded to the ICMT by the Moore Foundation. The two awards establish an EPiQS Theory Center at the Institute for Condensed Matter Theory.

  • Outreach
  • Accessibility

University of Illinois at Urbana-Champaign physics graduate student Colin Lualdi quickly realized he was venturing into uncharted territory when he arrived at Illinois Physics at the start of Fall 2017. Deaf since birth and a native speaker of American Sign Language (ASL), Lualdi was now among a very small group worldwide of Deaf individuals working in physics. The exhilaration of performing cutting-edge research was accompanied by a sobering discovery: the lack of a common language model for effective scientific discourse in ASL was going to be a far greater challenge than he’d anticipated. Lualdi has embraced his own accessibility challenges as an opportunity to address a pressing need in the broader Deaf community. He has teamed up with colleagues at other research institutions to develop a robust and shared framework for scientific discourse in ASL. Specifically, Colin has been working with ASL Clear and ASLCORE, two national scientific sign language initiatives that are making good progress.