Chicago Quantum Exchange, IBM Q Network partner to advance quantum computing

Diana Anderson for the Chicago Quantum Exchange
4/26/2019

Collaboration to accelerate joint research and help train tomorrow’s quantum engineers

University of Chicago Professor David Awschalom (second from left), an Illinois Physics alumnus, a senior scientist at Argonne, and the director of the Chicago Quantum Exchange, works in his lab with postdoctoral trainees. Photo by Jean Lachat for UChicago
University of Chicago Professor David Awschalom (second from left), an Illinois Physics alumnus, a senior scientist at Argonne, and the director of the Chicago Quantum Exchange, works in his lab with postdoctoral trainees. Photo by Jean Lachat for UChicago
The Chicago Quantum Exchange, a growing intellectual hub for the research and development of quantum technology, will join forces with the IBM Q Network to provide leaps forward in electronics, computers, sensors and “unhackable” networks.

CQE member institutions will work with IBM Q scientists and engineers through IBM Q’s academic partner program to explore the field of quantum computing, including investigations into materials, fabrication techniques, algorithms, and software and hardware development. A critical component of the partnership will be to enhance efforts to train tomorrow’s quantum workforce; the IBM Q Network will fund up to five positions for postdoctoral researchers to work closely with scientists across the CQE to advance quantum computing.

The Chicago Quantum Exchange is anchored at the University of Chicago. Member institutions include the U.S. Department of Energy’s Argonne National Laboratory and Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, and the University of Wisconsin-Madison. The combined resources of the member institutions create a powerful hub of more than 100 scientists and engineers—among the world’s largest collaborative teams for quantum research.

CQE researchers are developing hardware and software for a new generation of quantum computers, synthesizing and characterizing new materials with quantum properties, and probing the ways in which quantum computing and information processing can provide insights into dark matter and black holes.

“Collaborating with IBMs scientists and engineers will accelerate progress in the field of quantum information,” says David Awschalom, director of the CQE, the Liew Family Professor of Molecular Engineering at UChicago and a senior scientist at Argonne. “This rapidly developing field requires working across different academic disciplines and developing projects beyond institutional boundaries. Partnering with IBM Q will help us drive a broad range of joint activities and help train a new workforce of quantum scientists and engineers.”

The collaboration with IBM Q includes projects with Awschalom and other UChicago researchers to develop quantum machine architectures and applications ranging from quantum communication interfaces to new types of qubits—the basic unit of quantum information. Professor Fred Chong and his UChicago research team will deepen their existing collaboration with IBM Q to develop quantum software. Chong, the Seymour Goodman Professor of Computer Science and an Argonne senior scientist, is the lead investigator for the Enabling Practical-Scale Quantum Computing (EPiQC) project, a multi-institutional effort funded by the National Science Foundation’s Expeditions in Computing Program, which works to bring quantum computing within reach by co-developing new algorithms, software, and hardware, including optimizations for IBM’s superconducting quantum technology.

The partnership builds on existing collaborations between CQE member institutions and IBM Q, the company’s quantum division. This includes the participation of Argonne and Fermilab in the IBM Q Network, the world’s first community of Fortune 500 companies, startups, academic institutions and research labs working with IBM to advance quantum computing and explore practical applications for business and science. The two labs partner with the IBM Q Hub at Oak Ridge National Lab.
 

Building the nation’s future quantum workforce

In addition to accelerating discovery and innovation in the rapidly developing areas of quantum technology, the CQE aims to build the nation’s workforce in emerging quantum fields.

“The CQE institutions, including the University of Illinois at Urbana-Champaign, have identified quantum information science as a key strategic area, and we are committed to providing research and education opportunities for our students and postdocs to train them to contribute to this exciting and important field. This partnership and investment from IBM Q will help us in that mission,” notes Dale Van Harlingen, professor of physics and the associate executive director of the Illinois Quantum Information Science and Technology center (IQUIST) at the University of Illinois at Urbana-Champaign.

Through the CQE, IBM Q will provide funding for up to five postdoctoral positions over five years to investigate some of the most profound scientific and technological challenges in quantum information science. These postdoctoral researchers will research quantum computing, quantum communication, quantum sensing and quantum algorithms.

 “As the field of quantum information continues to expand, so will the demand for quantum engineers in industry, government and at universities,” comments University of Chicago President Robert J. Zimmer. “Increasing our collaboration with IBM Q and other partners in the Chicago Quantum Exchange will allow our trainees, faculty and their colleagues to contribute to important work in applied science and engineering with strong potential to benefit society.”

The postdocs will have access to all member institutions, including a wide breadth of tools and capabilities that make investigation of cutting-edge quantum science and technology possible.

The postdocs will work at member institutions that support their individual areas of research and will receive dual mentorship at both the institution where they are placed and another member institution or IBM Q. Individuals interested in applying for a postdoc position at the CQE can access the application on the CQE website.

The CQE is further developing a national workforce of quantum scientists and engineers through the Quantum Information Science and Engineering Network (QISE-Net), a program supported by the National Science Foundation and in partnership with Harvard University. QISE-Net enables students to conduct their doctoral research jointly with industry or a national laboratory, translating ideas into research results.

Recent News

  • In Memoriam

Jim was widely viewed as one of the best teachers in the Physics Department. He was frequently listed in the University’s roster of excellent instructors and won awards for his classroom skills. In 2012, he received the Arnold T. Nordsieck Physics Award for Teaching Excellence for his “patient, insightful, and inspiring physics teaching, one problem at a time, that encourages undergraduate students to take their understanding to a new level.”

  • Research

Now a team of theoretical physicists at the Institute for Condensed Matter Theory (ICMT) in the Department of Physics at the University of Illinois at Urbana-Champaign, led by Illinois Physics Professor Philip Phillips, has for the first time exactly solved a representative model of the cuprate problem, the 1992 Hatsugai-Kohmoto (HK) model of a doped Mott insulator.

  • Alumni News

How do cells use physics to carry out biological processes? Biophysicist Ibrahim Cissé explores this fundamental question in his interdisciplinary laboratory, leveraging super-resolution microscopy to probe the properties of living matter. As a postdoc in 2013, he discovered that RNA polymerase II, a critical protein in gene expression, forms fleeting (“transient”) clusters with similar molecules in order to transcribe DNA into RNA. He joined the Department of Physics in 2014, and was recently granted tenure and a joint appointment in biology. He sat down to discuss how his physics training led him to rewrite the textbook on biology.
 

  • Quantum Information Science

The Grainger College of Engineering’s Illinois Quantum Information Science and Technology Center (IQUIST) will launch a National Science Foundation Quantum Leap Challenge Institute for Hybrid Quantum Architectures and Networks (HQAN). The collaborative institute spans three Midwest research powerhouses, all of which are members of the Chicago Quantum Exchange: The University of Illinois, University of Chicago, and the University of Wisconsin. HQAN also includes partnerships with industry and government labs.

Established with a $25 million, five-year NSF award, the HQAN institute will be one of only three Quantum Leap Challenge Institutes in the country. Quantum Leap Challenge Institutes will bring together multidisciplinary researchers and diverse partners to advance scientific, technological, and workforce development goals.