Illinois Physics researchers awarded DOE grants to advance quantum information science

Siv Schwink

Physics Professors Bryan Clark and Taylor Hughes of the University of Illinois at Urbana-Champaign have been awarded US Department of Energy (DOE) grants to develop new quantum computing capabilities. The awards are part of a $37-million DOE initiative supporting research that will lay the groundwork for the development of new quantum information systems and that will use current quantum information capabilities to advance research in material and chemical sciences.

Quantum information science (QIS) is an exciting and rapidly growing field promising a broad range of advances beyond today’s classical technologies. QIS exploits quantum mechanics—the theory that explains nature at all scales, from electrons, to atoms, to neutron stars—as a platform for information processing, data storage, and secure communications. Quantum computers will use qubits, non-binary bits capable of hosting near limitless quantum states to process and store data, while quantum communications will leverage quantum mechanical properties such as entanglement to generate unhackable encryption.

Bryan Clark

Clark’s team received $450,000 to develop new-generation quantum computing algorithms for simulating quantum many-body systems  on today’s small error-prone quantum computers as well as hybrid quantum-classical machines.  One of the most promising applications for quantum computers is the simulation of quantum systems ranging from molecules to materials.  Results of such simulations will have implications for medicine and pharmacology, manufacturing, computing, networking, and sensing.

Clark, who is the primary investigator (PI) on the grant, notes, “These kinds of simulations are not easy to run on classical computers because of the exponential cost in processing time. The largest exact simulations we can run with current classical computing resources have approximately 50 electrons, and current approximations aren’t really accurate enough in many scenarios. While, in principle, quantum computers overcome this problem, the standard exact quantum computing techniques are unusable on today’s era of noisy quantum computers. We need new quantum algorithms.”

Clark’s team will develop quantum computing algorithms for simulating molecules and materials by porting the classical approximation techniques used on classical computers to quantum computers.  In addition, this research will establish how to make these algorithms simultaneously leverage existing large classical parallel computing resources in concert with small quantum machines.

Taylor Hughes

Hughes is a co-PI on a separate $1.5 million DOE grant supporting research into the design and assembly of atomically-precise quantum materials and devices. The team is led by Harvard Professor Jennifer Hoffman and includes Hughes and Harvard Professors Julia Mundy and Boris Kozinsky.

Hughes and his colleagues will develop a platform of new materials to be used in quantum information devices, integrating theoretical and experimental approaches to materials development. The team’s method will employ a tight feedback loop to predict, design, realize, and characterize new materials platforms and device architectures based on “Xenes”—single layers of atoms arranged in a honeycomb lattice, analogous to carbon-based graphene, but comprising heavier elements, such as stanene, bismuthene, and plumbene.

To functionalize these Xenes into devices, the investigators will decorate the Xenes with “adatoms” such as halogens or magnetic atoms. The scientists will use state-of-the-art computational techniques to identify the most promising candidates for adatoms or molecular groups having specific desired functionalities.

Scanning probe lithography—the technique of dragging sharp tip across a surface with picometer precision—will be used to pattern the Xene layers with arrays of specific adatoms or molecules. The different adatoms can locally stabilize distinct quantum states of matter, whose boundaries can be used to transport spin or charge. Scanning tunneling microscopy, which uses an atomically sharp tip to measure tiny currents of a few thousands of electrons, will be used to immediately detect the effect of individual atomic placement on the emergent quantum states. 

“The idea is to develop qubit systems that are reconfigurable by dragging single atoms,” explains Hughes. “If we are successful, our work could lead to novel quantum-device capabilities, including increased resolution in imaging and detecting. It could also benefit advanced cryptography for secure communication. The overarching goal of this line of research is to contribute to the development of quantum computational capabilities that far exceed today’s classical computing limitations. This is especially important given today’s “big data” research efforts around the globe.”

Clark and Hughes are members of the Illinois Quantum Information Science and Technology Center and of the Institute for Condensed Matter Theory, both at the University of Illinois at Urbana-Champaign.

Recent News

  • In the Media
  • Student News
  • Atomic Molecular and Optical Physics
  • Quantum Information Science

When it comes to furthering our overall understanding of the physical world, ultracold quantum gases are awfully promising. As the famous physicist Richard Feynman argued, to fully understand nature, we need quantum means of simulation and computation. Ultracold atomic systems have, in the last 30 years, proven to be amazing quantum simulators. The number of applications for these systems as such simulators is nothing short of overwhelming, ranging from engineering artificial crystals to providing new platforms for quantum computing. In its brief history, ultracold atomic experimental research has enhanced physicists’ understanding of a truly vast array of important phenomena.

  • Research
  • Condensed Matter Physics

A Majorana particle is a fermion that is its own anti-particle. Majorana particles were postulated to exist by Ettore Majorana in a now famous paper written in 1937. However, such particles have not  been discovered in nature to date.  The possible realization of Majorana particles in condensed matter systems has generated much excitement and revived interest in observing these particles, especially because the condensed matter realization may be useful for topological quantum computation. A new paper by Illinois Physics Professor Vidya Madhavan and collaborators recently published in Science shows the first evidence for propagating 1D Majorana modes realized at 1D domain walls in a superconductor  FeSexTe1−x

  • In the Media

Albert Einstein was right again. More than 100 years ago, his calculations suggested that when too much energy or matter is concentrated in one place, it will collapse in on itself and turn into a dark vortex of nothingness. Physicists found evidence to support Einstein’s black hole concept, but they’d never observed one directly. In 2017, 200-plus scientists affiliated with more than 60 institutions set out to change that, using eight global radio observatories to chart the sky for 10 days. In April they released their findings, which included an image of a dark circle surrounded by a fiery doughnut (the galaxy Messier 87), 55 million light years away and 6.5 billion times more massive than our sun. “We have seen what we thought was unseeable,” said Shep Doeleman, leader of what came to be known as the Event Horizon Telescope team. The team’s name refers to the edge of a black hole, the point beyond which light and matter cannot escape. In some ways, the first picture of a black hole is also the first picture of nothing.

Institute for Condensed Matter Theory in the Department of Physics at the University of Illinois at Urbana-Champaign has recently received a five-year grant of over $1 million from the Gordon and Betty Moore Foundation. The grant is part of the Gordon and Betty Moore Foundation’s Emergent Phenomena in Quantum Systems (EPiQS) Initiative, which strives to catalyze major discoveries in the field of quantum materials—solids and engineered structures characterized by novel quantum phases of matter and exotic cooperative behaviors of electrons. This is the second 5-year EPiQS grant awarded to the ICMT by the Moore Foundation. The two awards establish an EPiQS Theory Center at the Institute for Condensed Matter Theory.