Spotlight on new faculty: Fahad Mahmood, Condensed Matter

Jessica Raley for Illinois Physics
11/15/2019

The Department of Physics at Illinois welcomes an extraordinary set of ten new faculty members this year. Eight of them have arrived on campus and have begun setting up their labs and settling into life in Champaign-Urbana. Two more faculty are set to arrive in January. We will feature each of them here over the next couple of weeks. Check back regularly to learn more about the exciting work these new faculty members are doing.

Professor Fahad Mahmood (right) works with graduate student Yinchuan Lu (center) and undergraduate student Andrea Perry (left) on generating and detecting THz radiation.
Professor Fahad Mahmood (right) works with graduate student Yinchuan Lu (center) and undergraduate student Andrea Perry (left) on generating and detecting THz radiation.

Professor Fahad Mahmood

Fahad Mahmood joins the condensed matter effort at Illinois. In his research on ultra-fast optical spectroscopies of quantum materials, he uses extremely short laser pulses to study problems at the intersection of strongly correlated quantum materials and non-equilibrium physics. He is best known for his work on THz collective modes and fluctuations in cuprate superconductors and on Floquet-Bloch states in topological insulators. His future research will explore the ways in which new quantum phases of matter can be studied and engineered by shining light on electrons. Of his decision to bring his research program to Illinois, he says, “I have excellent inter-disciplinary resources here e.g., from materials science, from electrical engineering, and from chemistry. A lot of my work is based on new materials, and there are already research groups here who are growing and studying interesting materials that one can then characterize and essentially play with using the spectroscopies that I work on.”

For more information about Fahad's research, or to inquire about joining his lab, please visit his website.

Recent News

  • In the Media
  • Student News
  • Atomic Molecular and Optical Physics
  • Quantum Information Science

When it comes to furthering our overall understanding of the physical world, ultracold quantum gases are awfully promising. As the famous physicist Richard Feynman argued, to fully understand nature, we need quantum means of simulation and computation. Ultracold atomic systems have, in the last 30 years, proven to be amazing quantum simulators. The number of applications for these systems as such simulators is nothing short of overwhelming, ranging from engineering artificial crystals to providing new platforms for quantum computing. In its brief history, ultracold atomic experimental research has enhanced physicists’ understanding of a truly vast array of important phenomena.

  • Research
  • Condensed Matter Physics

A Majorana particle is a fermion that is its own anti-particle. Majorana particles were postulated to exist by Ettore Majorana in a now famous paper written in 1937. However, such particles have not  been discovered in nature to date.  The possible realization of Majorana particles in condensed matter systems has generated much excitement and revived interest in observing these particles, especially because the condensed matter realization may be useful for topological quantum computation. A new paper by Illinois Physics Professor Vidya Madhavan and collaborators recently published in Science shows the first evidence for propagating 1D Majorana modes realized at 1D domain walls in a superconductor  FeSexTe1−x

  • In the Media

Albert Einstein was right again. More than 100 years ago, his calculations suggested that when too much energy or matter is concentrated in one place, it will collapse in on itself and turn into a dark vortex of nothingness. Physicists found evidence to support Einstein’s black hole concept, but they’d never observed one directly. In 2017, 200-plus scientists affiliated with more than 60 institutions set out to change that, using eight global radio observatories to chart the sky for 10 days. In April they released their findings, which included an image of a dark circle surrounded by a fiery doughnut (the galaxy Messier 87), 55 million light years away and 6.5 billion times more massive than our sun. “We have seen what we thought was unseeable,” said Shep Doeleman, leader of what came to be known as the Event Horizon Telescope team. The team’s name refers to the edge of a black hole, the point beyond which light and matter cannot escape. In some ways, the first picture of a black hole is also the first picture of nothing.

Institute for Condensed Matter Theory in the Department of Physics at the University of Illinois at Urbana-Champaign has recently received a five-year grant of over $1 million from the Gordon and Betty Moore Foundation. The grant is part of the Gordon and Betty Moore Foundation’s Emergent Phenomena in Quantum Systems (EPiQS) Initiative, which strives to catalyze major discoveries in the field of quantum materials—solids and engineered structures characterized by novel quantum phases of matter and exotic cooperative behaviors of electrons. This is the second 5-year EPiQS grant awarded to the ICMT by the Moore Foundation. The two awards establish an EPiQS Theory Center at the Institute for Condensed Matter Theory.