James N Eckstein



James N Eckstein

Primary Research Area

  • Condensed Matter Physics


Professor James N. Eckstein received his bachelor's degree in physics from St. Olaf College, Northfield, Minnesota, in 1973, and his PhD. in physics from Stanford University in 1978. He joined the Department of Physics at the University of Illinois as a professor in 1997, after 15 productive years as a senior scientist/research manager at Varian Associates in Palo Alto, California.

Professor Eckstein is widely recognized as one of the pioneers in the development of techniques for growing high-quality oxide thin films for the investigation of fundamental properties of cuprate superconductors and oxide magnetic materials. His development of atomic layer-by-layer molecular beam epitaxy (MBE) has enabled research on oxide films at new levels of precision and sophistication.

His work, together with collaborators at Illinois, Stanford, and Berkeley, has been central to recent research on superconductors using measurements of angle-resolved photoemission and terahertz conductivity. In addition, his group has developed some of the best planar tunneling junctions ever made with oxide superconductors and oxide magnets. His studies of magnetic tunneling in oxides have pointed directly to the role of defects in limiting the range of temperatures over which such junctions exhibit significant magnetotransport effects. His program on thin-film manganites has contributed significantly to the understanding of these complex materials.

Professor Eckstein is the holder of six U.S. patents.

Research Statement

Superconducting and Magnetic Materials
We have been studying the physics of colossal magnetoresistance using manganite films grown by atomic layer-by-layer molecular beam epitaxy. The films are atomically flat and have low-temperature transport rivaling that of single crystal samples. In our best samples, we have observed low-temperature residual resistivity of less than 50 μW cm.

We have studied simple patterned transport samples extensively. We have observed a large anisotropy in magnetic behavior and magneto-transport that we attribute to spin orbit scattering. We have also seen that the metal insulator transition in our samples is independent of the magnetic state of the sample. That is, when the sample magnetization is fixed, the metal insulator transition occurs at a fixed temperature, independent of magnetization.

Jim Eckstein in his MBE labMore recently, we have begun to study tunneling into these materials by assembling single-crystal tunneling structures, which consist of a base manganite film, covered epitaxially with a titanate barrier layer. Since the two species are well lattice matched, it is possible to grow such an interface continuously. The barrier is followed by an in-situ deposited gold film. The trilayers are patterned into mesa structure.

Interpretation of the tunneling is complicated by the spreading resistance of the manganite, which can be large. When the manganite is the most conducting, however, it is possible to obtain tunneling spectra that are predominantly caused by the tunnel junction. These spectra show metallic behavior in the manganite and no significant sign of the gap structure recently reported in samples investigated by ex-situ scanning tunneling spectroscopy. A small reduction in conductivity is observed near V=0, but this appears to be unrelated to the data shown in the STS report. We propose that the metallic tunneling obtained in these structures grown with epitaxial and in-situ interfaces is due to a metallic and ungapped density of states at the Fermi energy in the manganites.

Colossal Magnetoresistance Spin-valves Grown by Molecular Beam Epitaxy
The large conduction electron spin polarization in the manganite magnetic oxides such as La0.67Sr0.33MnO3 (LSMO) make them candidates for high sensitivity spin-valves. Previous manganite ferromagnet-insulator-ferromagnet tunnel junctions grown by laser deposition techniques (J. Z. Sun et al., Appl. Phys. Lett. 73 1008 [1998]; M. Viret et al., Europhys. Lett. 39, 545 [1997]) did indeed exhibit record magnetoresistance (MR) sensitivity at 4.2 K. However, this MR was found to decrease with temperature to decidedly "un-colossal" levels at room temperature, despite the fact that 295 K is well below the LSMO Curie temperature, and the spin-polarization is expected to be large.

Interfacial disorder (structural or compositional) leading to suppressed ferromagnetism is a likely explanation for the reduction in spin-valve magnetoresistance prior to loss of bulk ferromagnetic order. To address this issue, we have fabricated manganite spin-valve structures with crystalline SrTiO3 or CaTiO3 insulating barriers using molecular beam epitaxy for high quality interfaces, and control of doping and stoichiometry at the atomic level. We will discuss the extent to which "colossal" magnetoresistance in manganite spin-valves can be preserved at higher temperatures and low fields by atomic layer engineering of the interface.


  • Bernd T. Matthias Prize (2012) Awarded at the 2012 Materials and Mechanisms of Superconductivity Conference, August 2012, Washington, DC.
  • Fellow, American Physical Society (2005)
  • Arnold O. Beckman Research Award, Research Board, University of Illinois at Urbana-Champaign (2001)
  • Dupont Graduate Fellow (1973-1975)

Semesters Ranked Excellent Teacher by Students

Spring 2017PHYS 102
Fall 2004PHYS 487

Selected Articles in Journals

  • Xiaofang Zhai, Long Cheng, Yang Liu, Christian Schlepuetz, Shuai Dong, Hui Li, Xiaoqiang Zhang, Shengqi Chu, Lirong Zheng, Jing Zhang, Aidi Zhao, Hawoong Hong, Anand Bhattacharya, James Eckstein, Changgan Zeng, "Correlating interfacial octahedral rotations with magnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices," Nature Communications 5, 4283 (2014)
  • Michael Vissers, Victor K. Chua, Stephanie A. Law, Smitha Vishveshwara, James N. Eckstein, "Measurement of junction conductance and proximity effect at superconductor / semiconductor junctions," arXiv 1402.6055 (2014)
  • Xiaofang Zhai; Mohapatra, C.S.; Shah, A.B.; Jian-Min Zuo; Eckstein, J.N., "Magnetic properties of the (LaMnO3)N/(SrTiO3)N atomic layer superlattices," Journal of Applied Physics 113, 173913 (2013)
  • Warusawithana, M.P.; Richter, C.; Mundy, J.A.; Roy, P.; Ludwig, J.; Paetel, S.; Heeg, T.; Pawlicki, A.A.; Kourkoutis, L.F.; Zheng, M.; Lee, M.; Mulcahy, B.; Zander, W.; Zhu, Y.; Schubert, J.; Eckstein, J.N.; Muller, D.A.; Hellberg, C.S.; Mannhart, J.; Schlom, D.G., "LaAlO3 stoichiometry is key to electron liquid formation at LaAlO3/SrTiO3 interfaces," Nature Communications 4, 2351 (2013)
  • Mei, A.B.; Howe, B.M.; Zhang, C.; Sardela, M.; Eckstein, J.N.; Hultman, L.; Rockett, A.; Petrov, I.; Greene, J.E., "Physical properties of epitaxial ZrN/MgO(001) layers grown by reactive magnetron sputtering," Journal of Vacuum Science and Technology A (Vacuum, Surfaces, and Films) 31, 061516 (2013)
  • Eckstein, James N.; Levy, Jeremy, "Materials issues for quantum computation," MRS Bulletin 38, 783-789 (2013)
  • Rohrer, Gregory S.; Affatigato, Mario; Backhaus, Monika; Bordia, Rajendra K.; Chan, Helen M.; Curtarolo, Stefano; Demkov, Alex; Eckstein, James N.; Faber, Katherine T.; Garay, Javier E.; Gogotsi, Yury; Huang, Liping; Jones, Linda E.; Kalinin, Sergei V.; Lad, Robert J.; Levi, Carlos G.; Levy, Jeremy; Maria, Jon-Paul; Mattos Jr., Louis; Navrotsky, Alexandra; Orlovskaya, Nina; Pantano, Carlo; Stebbins, Jonathan F.; Sudarshan, T.S.; Tani, Toshihiko; Scott Weil, K., “Challenges in ceramic science: A report from the workshop on emerging research areas in ceramic science,” Journal of the American Ceramic Society 95, 3699-3712 (2012)
  • Anton, S.M.; Nugroho, C.D.; Birenbaum, J.S.; O’Kelley, S.R.; Orlyanchik, V.; Dove, A.F.; Olson, G.A.; Yoscovits, Z.R.; Eckstein, J.N.; Van Harlingen, D.J.; Clarke, John, “Low-frequency critical current noise in Josephson junctions induced by temperature fluctuations,” Applied Physics Letters 101, (2012)
  • Bosse´, G; Bilbro, L.S.; Aguilar, R.V.; LiDong Pan; Wei Liu; Stier, A.V.; Li, Y.; Greene, L.H.; Eckstein, J.; Armitage, N.P., “Low energy electrodynamics of the Kondo-lattice antiferromagnet CeCu2Ge2,” Physical Review B 85, 155105 (2012)
  • Bollinger, A.T.; Eckstein, J.N.; Dubuis, G.; Pavuna, D.; Bozovic, “Atomic-layer engineering of oxide superconductors,” Proceedings of SPIE - The International Society for Optical Engineering, 8263, Oxide-Based Materials and Devices III, (2012)
  • Hefei Hu; Jian-Min Zuo; Mao Zheng; Eckstein, J.N.; Wan Kyu Park; Greene, L.H.; Jinsheng Wen; Zhijun Xu; Zhiwei Lin; Qiang Li; Genda Gu, “Structure of the oxygen-annealed chalcogenide superconductor Fe1.08Te0.55Se0.45Ox,” Physical Review B) 85, 064504 (2012)

Related news

  • Research

New findings from physicists at the University of Illinois, in collaboration with researchers at The University of Tokyo and others, clarify the physics of coupling topological materials with simple, conventional superconductors.

Through a novel method they devised to fabricate bulk insulating topological insulator (TI) films on superconductor (SC) substrates, the researchers were able to more precisely test the proximity effect, or coupling when two materials contact one another, between TIs and SCs. They found that when the TI film is bulk insulating, no superconductivity is observed at the top surface, but if it is a metal, as in prior work, strong, long-range superconducting order is seen. The experimental efforts were led by physics Professor Tai-Chang Chiang and Joseph Andrew Hlevyack, postdoctoral researcher in Professor Chiang’s group, in collaboration with Professor James N. Eckstein’s group including Yang Bai, Professor Kozo Okazaki’s Lab at The U. of Tokyo, and five other institutes internationally. The findings are published in Physical Review Letters, which has been highlighted as a PRL Editors’ Suggestion.

  • Research
  • Condensed Matter Physics

Now, a novel sample-growing technique developed at the U. of I. has overcome these obstacles. Developed by physics professor James Eckstein in collaboration with physics professor Tai-Chang Chiang, the new “flip-chip” TI/SC sample-growing technique allowed the scientists to produce layered thin-films of the well-studied TI bismuth selenide on top of the prototypical SC niobium—despite their incompatible crystalline lattice structures and the highly reactive nature of niobium.

These two materials taken together are ideal for probing fundamental aspects of the TI/SC physics, according to Chiang: “This is arguably the simplest example of a TI/SC in terms of the electronic and chemical structures. And the SC we used has the highest transition temperature among all elements in the periodic table, which makes the physics more accessible. This is really ideal; it provides a simpler, more accessible basis for exploring the basics of topological superconductivity,” Chiang comments.