Taylor L Hughes

Professor

Contact

Taylor L Hughes

Primary Research Area

  • Condensed Matter Physics
2115 Engineering Sciences Building
fax:

For more information

Biography

Professor Taylor Hughes received his bachelor's degrees in physics and mathematics from the University of Florida in 2003, graduating summa cum laude. He subsequently worked as a software engineer for a year as a department of defense contractor. He went on to obtain a Ph.D. from Stanford University in 2009, working in the condensed matter theory group of Professor Shou-Cheng Zhang. His research covered a broad range of subjects from spintronics, to graphene/graphite, to topological insulators. His two primary research contributions as a graduate student are the collaborations which predicted of the existence of a quantum spin Hall state in HgTe/CdTe quantum wells, and secondly constructed the topological response theory of 3D time-reversal invariant topological insulators.

Professor Hughes then moved to the University of Illinois at Urbana-Champaign as a postdoc under Professor Eduardo Fradkin. During these two years he began developing methods to characterize states of matter using quantum entanglement, most notably, disordered fermionic systems and topological insulator/ordered systems. Additionally he began working on the theory of the topological visco-elastic response in topological insulators.

Professor Hughes joined the faculty at the University of Illinois in the Fall of 2011.

Undergraduate Research Opportunities

Professor Hughes has several opportunities for research projects/reading courses for undergraduates who are highly-motivated and can program or proficiently use either Matlab, Mathematica, or C/C++. Students must have had at least PHY485 or PHY 486.

Research Statement

My research interests are focused in three main areas:

1. Topological insulators/Superconductors

2. Using quantum information/entanglement techniques to characterize quantum condensed matter systems.

3. Mesoscopic transport in low-dimensional materials or heterostructures

Other interests include topological order, quantum Hall effect, spin-orbit coupled electronic systems, connections between high-energy physics, gravity, and condensed matter.

Some of my recent work has been on connections between torsion, gravity, and viscosity in topological insulators, characterizing disordered topological insulators using the entanglement spectrum, and transport calculations in graphene/superconductor junctions.

Interested students should contact me via email and be willing to work on a broad range of topics. Before contacting me please look at some of my selected publications below, or on the arxiv to get an idea of which subjects are of the most interest to you.

I have several opportunities for research projects/reading courses for undergraduates who are highly-motivated and can program or proficiently use either Matlab, Mathematica, or C/C++/FORTRAN.

Graduate Research Opportunities

I have graduate student positions open for one, or possibly two students.

Post-Doctoral Research Opportunities

I do not have any (funded) post-doctoral research opportunities at this time.

Honors

  • Donald Biggar Willett Faculty Scholar (April 2020)
  • ONR Young Investigator Award (May 2015)
  • University of Illinois Center for Advanced Study Fellowship (November 2014)
  • NSF CAREER Award (February 2014)
  • Alfred P. Sloan Foundation Research Fellow (April 2013)
  • Dean's Award for Excellence in Research for an Assistant Professor (February 2014)

Semesters Ranked Excellent Teacher by Students

SemesterCourseOutstanding
Spring 2019PHYS 496
Fall 2017PHYS 460

Selected Articles in Journals

Related news

  • Accolades

Physical Review B is celebrating its 50th anniversary in 2020. The journal emerged out of its revered parent, The Physical Review, in response to the explosive growth of specialized physics content. It has excelled in front-edge coverage of condensed matter and materials physics research. As part of the celebration, in 2020 the editors are presenting a Milestone collection of papers that have made lasting contributions to condensed matter physics. Selection of papers of such importance is not an easy task. It is inevitable that some very important work will not be featured because of the abundance of gems in the treasure trove of the largest journal for physics. The Milestones will be highlighted on the journal website and in social media throughout the year.

  • Research

The charge of a single electron, e, is defined as the basic unit of electric charge. Because electrons—the subatomic particles that carry electricity—are elementary particles and cannot be split, fractions of electronic charge are not normally encountered. Despite this, researchers at the University of Illinois at Urbana-Champaign have recently observed the signature of fractional charges ranging from e/4 to 2e/3 in exotic materials known as topological crystalline insulators.

The team of researchers, led by Illinois Mechanical Science and Engineering Professor Gaurav Bahl and Illinois Physics Professor Taylor Hughes, has been using ultra high frequency electric circuits to study topological insulators since 2017. Their recent measurement of fractional charge, appearing in the current issue of the journal Science, stems from the team’s theoretical work on crystalline insulators.

  • research

Researchers from the University of Illinois at Urbana-Champaign’s Grainger College of Engineering have experimentally demonstrated a new way to transport energy even through wave-guides that are defective and even if the disorder is a transient phenomenon in time. This work could lead to much more robust devices that continue to operate in spite of damage.

Gaurav Bahl, associate professor in mechanical science and engineering, and Taylor Hughes, physics professor, published their findings in Nature Communications. This important work was led by postdoctoral researcher Inbar Grinberg, also in mechanical science and engineering.

  • Research
  • Condensed Matter Physics

A Majorana particle is a fermion that is its own anti-particle. Majorana particles were postulated to exist by Ettore Majorana in a now famous paper written in 1937. However, such particles have not  been discovered in nature to date.  The possible realization of Majorana particles in condensed matter systems has generated much excitement and revived interest in observing these particles, especially because the condensed matter realization may be useful for topological quantum computation. A new paper by Illinois Physics Professor Vidya Madhavan and collaborators recently published in Science shows the first evidence for propagating 1D Majorana modes realized at 1D domain walls in a superconductor  FeSexTe1−x