Taylor L Hughes

Professor

Biography

Professor Taylor Hughes received his bachelor's degrees in physics and mathematics from the University of Florida in 2003, graduating summa cum laude. He subsequently worked as a software engineer for a year as a department of defense contractor. He went on to obtain a Ph.D. from Stanford University in 2009, working in the condensed matter theory group of Professor Shou-Cheng Zhang. His research covered a broad range of subjects from spintronics, to graphene/graphite, to topological insulators. His two primary research contributions as a graduate student are the collaborations which predicted of the existence of a quantum spin Hall state in HgTe/CdTe quantum wells, and secondly constructed the topological response theory of 3D time-reversal invariant topological insulators.

Professor Hughes then moved to the University of Illinois at Urbana-Champaign as a postdoc under Professor Eduardo Fradkin. During these two years he began developing methods to characterize states of matter using quantum entanglement, most notably, disordered fermionic systems and topological insulator/ordered systems. Additionally he began working on the theory of the topological visco-elastic response in topological insulators.

Professor Hughes joined the faculty at the University of Illinois in the Fall of 2011.

Research Statement

My research interests are focused in three main areas:

1. Topological insulators/Superconductors

2. Using quantum information/entanglement techniques to characterize quantum condensed matter systems.

3. Mesoscopic transport in low-dimensional materials or heterostructures

Other interests include topological order, quantum Hall effect, spin-orbit coupled electronic systems, connections between high-energy physics, gravity, and condensed matter.

Some of my recent work has been on connections between torsion, gravity, and viscosity in topological insulators, characterizing disordered topological insulators using the entanglement spectrum, and transport calculations in graphene/superconductor junctions.

Interested students should contact me via email and be willing to work on a broad range of topics. Before contacting me please look at some of my selected publications below, or on the arxiv to get an idea of which subjects are of the most interest to you.

I have several opportunities for research projects/reading courses for undergraduates who are highly-motivated and can program or proficiently use either Matlab, Mathematica, or C/C++/FORTRAN.

Honors

  • ONR Young Investigator Award (May 2015)
  • University of Illinois Center for Advanced Study Fellowship (November 2014)
  • NSF CAREER Award (February 2014)
  • Alfred P. Sloan Foundation Research Fellow (April 2013)
  • Dean's Award for Excellence in Research for an Assistant Professor (February 2014)

Semesters Ranked Excellent Teacher by Students

SemesterCourseOutstanding
Fall 2017PHYS 460

Selected Articles in Journals

Related news

  • Research
  • Condensed Matter Theory

Cheaper and more efficient photonic devices, such as lasers, optical fibers, and other light sources, may be possible with confined light that is unaffected by imperfections in the material that confines it, according to new research. A team of physicists from Penn State, the University of Pittsburgh, and the University of Illinois have demonstrated in a proof-of-concept experiment that they can contain light in such a way that makes it highly insensitive to defects that might be present in a material. The results of the research appear online on June 4, 2018 in the journal Nature Photonics.

  • Research
  • Condensed Matter Theory
  • Condensed Matter Physics

Researchers have produced a “human scale” demonstration of a new phase of matter called quadrupole topological insulators that was recently predicted using theoretical physics. These are the first experimental findings to validate this theory.

The researchers report their findings in the journal Nature.

The team’s work with QTIs was born out of the decade-old understanding of the properties of a class of materials called topological insulators. “TIs are electrical insulators on the inside and conductors along their boundaries, and may hold great potential for helping build low-power, robust computers and devices, all defined at the atomic scale,” said mechanical science and engineering professor and senior investigator Gaurav Bahl.

The uncommon properties of TIs make them a special form of electronic matter. “Collections of electrons can form their own phases within materials. These can be familiar solid, liquid and gas phases like water, but they can also sometimes form more unusual phases like a TI,” said co-author and physics professor Taylor Hughes.

  • Research
  • Condensed Matter Physics
  • Condensed Matter Theory
  • ICMT
  • Institute for Condensed Matter Theory

Researchers at the University of Illinois at Urbana-Champaign and Princeton University have theoretically predicted a new class of insulating phases of matter in crystalline materials, pinpointed where they might be found in nature, and in the process generalized the fundamental quantum theory of Berry phases in solid state systems. What’s more, these insulators generate electric quadrupole or octupole moments—which can be thought of roughly as very specific electric fields—that are quantized. Quantized observables are a gold standard in condensed matter research, because experimental results that measure these observables have to, in principle, exactly match theoretical predictions—leaving no wiggle room for doubt, even in highly complex systems.

The research, which is the combined effort of graduate student Wladimir Benalcazar and Associate Professor of Physics Taylor Hughes of the Institute for Condensed Matter Theory at the U. of I., and Professor of Physics B. Andrei Bernevig of Princeton, is published in the July 7, 2017 issue of the journal Science.

  • Research
  • Condensed Matter Physics

Physics professor Taylor Hughes and mechanical science and engineering professor Gaurav Bahl of the University of Illinois at Urbana-Champaign are part of an interdisciplinary team that will study non-reversible sound wave propagation over the next four years, with a range of promising potential applications.

The National Science Foundation has announced a $2-million research award to the team, which includes University of Oregon physics professor Hailin Wang and Duke University electrical and computer engineering professor Steven Cummer. The grant is part of a broader $18-million NSF-funded initiative, the Emerging Frontiers in Research and Innovation (EFRI) program, supporting nine teams—a total of 37 researchers at 17 institutions—to pursue fundamental research in the area of new light and acoustic wave propagation, known as NewLAW.