Paul G Kwiat



Paul G Kwiat

Primary Research Area

  • AMO / Quantum Physics
337B Loomis Laboratory

For more information


Professor Paul G. Kwiat received his Ph.D from the University of California, Berkeley (1993), where his dissertation was on nonclassical effects from spontaneous parametric downconversion. After two years as a Lise Meitner Fellow with the quantum optics group of Prof. Anton Zeilinger (at the Univ. of Innsbruck, Austria), he went to Los Alamos National Laboratory (LANL) as an Oppenheimer Fellow; in 1998 he became a technical staff member in the Neutron Science and Technology group of Physics Division. He has given invited talks at numerous national and international conferences and has authored more than 100 articles on various topics in quantum optics and quantum information, including several review articles. He is a Fellow of the Optical Society of America and the American Physical Society and an Expert Panel member for both the Quantum Computation and Quantum Cryptography Roadmaps.

In 1998, Professor Kwiat was awarded the LANL Fellows Prize for his work on optical studies of quantum information. He has done pioneering research on the phenomena of quantum interrogation, quantum erasure, and optical implementations of quantum information protocols. He is a primary inventor of the world's first two sources of polarization-entangled photons from down-conversion, which have been used for quantum cryptography, dense-coding, quantum teleportation, entanglement distillation, and most recently, optical quantum gates. In January 2001, he joined the Physics faculty as the second Bardeen Chair.

In 2018, Professor Kwiat was instrumental in the formation of the Illinois Quantum Information Science and Technology Center (IQUIST) at the University of Illinois at Urbana-Champaign and is currently serving as the center's inaugural Director. IQUIST seeks to accelerate quantum information science (QIS) research on the Urbana campus through collaborations across physics, electrical and computer engineering, computer science, math, and other engineering disciplines; and to build new educational programs to better equip a future QIS-smart workforce.

Research Interests

  • Ph.D. thesis title: Nonclassical Effects from Spontaneous Parametric Downconversion

Research Statement

spatial emission directions of entangled photons produced from a downconversion crystalQuantum Optics and Quantum Information — In our quantum optics lab, we use photons to investigate a range of topics from foundations of quantum mechanics (such as tests of nonlocality, the quantum Zeno effect, and so forth) to quantum cryptography (enabling for the first time provable unconditional security), communication (including "teleportation"), and computation (investigating simple quantum logic, algorithms, and decoherence-defeating measures). We have developed methods to produce pairs of photons that share the most mysterious of all quantum properties -- entanglement. The goal now is to improve these systems, to explore uncharted waters of novel quantum mechanical states, and to learn to use them to advantage in all areas of information processing.

Photonic Quantum Information Systems — Our goal is to develop the following optical quantum technologies for quantum information processing (including computation, cryptography, and metrology), and apply them to critical problems in these areas: Entangled-photon sources and characterization, quantum state transducer, photon storage and quantum memory, periodic single photon source, and photon number-resolving solid-state photomultipliers (SSPMs). These are central resources for many quantum communication applications.

Hyper-entanglement for Advanced Quantum Communication — Hyper-entanglement — the property that quantum systems, photons in our case, may be simultaneously entangled in multiple degrees of freedom — promises to enhance the capabilities of current quantum communication protocols, and to enable new ones.  We will extend  our experience in the creation, manipulation and characterization of hyper-entanglement in the photon pairs produced via spontaneous parametric down-conversion, and employ them for several relevant advanced quantum communication applications: quantum super-dense coding, production and application of bound entanglement, optimized teleportation beyond single qubits, and entanglement-enhanced quantum fingerprinting. Our research in these areas will substantially increase understanding of the benefits — and limitations — of using hyper-entanglement for quantum information processing, extending the capabilities of current communication protocols, and enabling new ones.

Optical Quantum Computing — Quantum computing uses the unique quantum properties of small systems to enable exponential computational speedups for certain classes of problems. Simple gates have been realized in several systems; the cleanest of these have been using photons as the quantum bits ("qubits"). Now we are investigating the feasibility of transitioning these small scall results to a much larger system, eventually capable of performing universal computations. We are exploring two approaches in detail. The first uses the newly devised "cluster" state paradigm, thereby reducing resoures requirements by several orders of magnitude. The second approach, relying on weak nonlinear effects, reduces the resource requirements even further.


  • APS Outstanding Referee Award 2008 (2009)
  • Optical Society of America R. W. Wood Prize (2009) (2009)
  • Young Scholar Award (3rd place), Amazing Light competition (2005)
  • Fellow, Optical Society of America (2005)
  • J. David Murley Milestone Award for Outstanding Achievements in Quantum Cryptography (2004)
  • Descartes Prize (2004)
  • Fellow, American Physical Society (2002)
  • Bardeen Chair, Dept. of Physics, Univ. of Illinois (2001-present)
  • Los Alamos National Laboratory Fellows Prize (1999)

Semesters Ranked Excellent Teacher by Students

Fall 2013PHYS 214
Spring 2004PHYS 112
Spring 2003PHYS 498
Spring 2001PHYS 498

Teaching Statement

My intent is to motivate students to care about these topics (e.g., electricity and magnetism, and thermal physics), by showing the ubiquitous application to our everyday lives, in addition to cutting edge technologies.

Selected Articles in Journals

Related news

  • Partnerships

The Chicago Quantum Exchange, a growing intellectual hub for the research and development of quantum technology, has expanded its community to include new industry partners working at the forefront of quantum technology and research. These corporate partners are Boeing, Applied Materials, Inc., ColdQuanta, Inc., HRL Laboratories LLC and Quantum Opus LLC.

Together, the Chicago Quantum Exchange and its new industry partners will focus on developing a new understanding of the rules of quantum mechanics, leading to breakthroughs in quantum devices, materials and computing techniques.

Based at the University of Chicago’s Pritzker School of Molecular Engineering, the Chicago Quantum Exchange is anchored by the University of Chicago, the U.S. Department of Energy’s Argonne National Laboratory and Fermi National Accelerator Laboratory (both operated for DOE by the University of Chicago), and the University of Illinois at Urbana-Champaign, and includes the University of Wisconsin-Madison and Northwestern University.

  • In the Media
  • Outreach
  • Quantum Information Science

Such “escape rooms” have become popular in recent years — immersive games where you and your friends (or strangers) search for clues and solve puzzles to defuse a simulated danger before time runs out.

Paul Kwiat, another University of Illinois physicist, is the creator of this particular escape room, which is one of the few, perhaps the only one, filled with puzzles that are based on science.

  • In the Media
  • Outreach
  • Quantum Information Science

Science News had the opportunity to try out a different version of LabEscape in Boston at a meeting of the American Physical Society in March. The puzzles are effective and artistic, and some of the reveals seem almost magical until the purveyors explain the scientific principles behind them at the end of the game. For example, some puzzles required the use of polarized glasses like those used to watch 3-D movies. Those challenges provided an opportunity to discuss the polarization of light — the orientation of light’s wiggling electromagnetic waves in a preferred direction. Only waves with the appropriate polarization make it through the lenses. The principle also reveals how 3-D movies work: Different polarizations make it through the right and left lenses, sending a different image to each eye.

  • Partnerships
  • Quantum Information Science

The Chicago Quantum Exchange, a growing intellectual hub for the research and development of quantum technology, will join forces with the IBM Q Network to provide leaps forward in electronics, computers, sensors and “unhackable” networks.

CQE member institutions will work with IBM Q scientists and engineers through IBM Q’s academic partner program to explore the field of quantum computing, including investigations into materials, fabrication techniques, algorithms, and software and hardware development. A critical component of the partnership will be to enhance efforts to train tomorrow’s quantum workforce; the IBM Q Network will fund up to five positions for postdoctoral researchers to work closely with scientists across the CQE to advance quantum computing.

The Chicago Quantum Exchange is anchored at the University of Chicago. Member institutions include the U.S. Department of Energy’s Argonne National Laboratory and Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, and the University of Wisconsin-Madison. The combined resources of the member institutions create a powerful hub of more than 100 scientists and engineers—among the world’s largest collaborative teams for quantum research.