Smitha Vishveshwara



Smitha Vishveshwara

Primary Research Area

  • Condensed Matter Physics
2109 Engineering Sciences Building


Professor Smitha Vishveshwara received her bachelor's degree in physics magna cum laude from Cornell University in 1996, and was supervised in undergraduate research by Carl Franck and David Mermin. She completed her Ph.D in theoretical physics from the University of California, Santa Barbara, in 2002 under the guidance of Matthew Fisher. Her graduate research includes the studies of localization physics in superconductors, Luttinger liquids, and quantum entanglement in carbon nanotubes. She served as a postdoctoral research associate with Paul Goldbart and Tony Leggett from 2002 to 2005, working on tunneling and fractional statistics in quantum Hall systems, Aharonov-Bohm effects in carbon nanotubes, entanglement in spin chairs and critical dynamics in charged superconductors. She joined the department as an assistant professor in August 2005.

Research Statement

Vishveshwara's research interests span a broad range of topics in condensed matter physics, and in particular, in strongly correlated states of matter at scales where quantum phenomena prevail. She maintains strong collaborative ties with experimentalists with regards to research involving cold atomic systems, carbon nanotubes, superconducting proximity effects and topologically ordered states of matter. Some of her research thrusts are as follows:

Co-existence of quantum phases in optical lattices
Interacting bosons confined to a pure lattice can exhibit either Mott insulating behavior, where constituent particles are pinned to lattice sites, or superfluid order, where particles are delocalized over sites. Under certain conditions, trapped bosons in optical lattices can display co-existence of the two phases. Vishveshwara has worked towards understanding various aspects of such a system. She has mapped the spatial profile of the co-existent phases, studied their signatures in spectroscopic and time-of-flight measurements, characterized the excitation spectrum of the system and explored Josephson physics between two superfluids mediated by a Mott insulator.

Anyons in two-dimensional systems
A spectacular feature of two-dimensional interacting systems is the potential existence of ‘topological order’ and associated quantum particles, namely anyons, which possess ‘fractional statistics’ interpolating between the statistics of the well-known fermions and bosons. Vishveshwara has performed extensive studies towards characterizing and detecting Abelian anyons in the fractional quantum Hall (FQH) system. These studies include predictions for statistically dependent partitioning of anyonic current in FQH edge-states, descriptions of two-particle correlators in the FQH bulk and proposals for creating anyonic beam-splitters akin to those that employ photons in other systems . More recently, Vishveshwara has turned to non-Abelian anyons. In light of recent experiments in superconducting strontium ruthenate, she has proposed an interferometry experiment to detect Majorana fermions predicted to exist in such superconductors. She has also studied quench dynamics in a lattice system that exhibits topological order.

Quantum phenomena in one-dimensional systems
Systems that are effectively confined to one dimension, such as carbon nanotubes, etched quantum wires, and mesoscopic rings, demonstrate striking collective phenemona that baffle and contradict the intuition obtained from three-dimensional electronic systems. Vishveshwara has investigated various aspects of such systems induced superconductivity in nanotubes and a related double-gap feature, application of fields on nanotubes as a means of accessing a valley degree of freedom, nanotube quantum dots and charge fractionalization in etched rings.

Research Honors

  • APS Fellowship (2019)
  • Center for Advanced Study Associate Position (2018-2019)
  • Simons Fellowship (2012)
  • NSF American Competitiveness and Innovation Fellow (2010)
  • Center for Advanced Studies Beckman Fellow (2009-2010)
  • National Science Foundation CAREER Award (2007)

Semesters Ranked Excellent Teacher by Students

Fall 2017PHYS 485
Fall 2015PHYS 101
Fall 2014PHYS 150
Spring 2012PHYS 213
Spring 2011PHYS 598
Spring 2008PHYS 487
Fall 2007PHYS 486

Related news

"We see surge after surge of the coronavirus disease plague the world. People driven out of homes, hungry, fearful, unable to bid their passing ones adieu. Science and much else is denied. Rampant hatred and prejudice tears us asunder. And we are left asking what there is to hope for, what will remain that we hold precious, sacred.

Yet, the nourishing oceanic waters of our planet continue their ebb and flow. We connect like never before in virtual space. Elephants and peacocks roam through newly emptied land and cleaner air. Strangers leaving care packages on doorsteps and other random acts of kindness abound. Grandparents feel the warmth of toddler palms kissing theirs across windowpanes."

  • In the Media

Walking to school as a child, UC San Diego visiting professor Smitha Vishveshwara asked her father, a black hole physicist, what he did for a living.

“He’d say, ‘Oh, I show that you can’t really kick a black hole.’ He’d be very playful,” said Vishveshwara, who lives in Solana Beach. “What he really meant was that he showed that black holes were stable entities.”

Through her father’s work, she learned about Margaret Burbidge, an influential astronomer, astrophysicist and the first director of UC San Diego’s Center for Astrophysics and Space Sciences. Coming full circle, Vishveshwara now serves as the university’s Margaret Burbidge visiting professor of physics.

  • Research

Institute for Condensed Matter Theory in the Department of Physics at the University of Illinois at Urbana-Champaign has recently received a five-year grant of over $1 million from the Gordon and Betty Moore Foundation. The grant is part of the Gordon and Betty Moore Foundation’s Emergent Phenomena in Quantum Systems (EPiQS) Initiative, which strives to catalyze major discoveries in the field of quantum materials—solids and engineered structures characterized by novel quantum phases of matter and exotic cooperative behaviors of electrons. This is the second 5-year EPiQS grant awarded to the ICMT by the Moore Foundation. The two awards establish an EPiQS Theory Center at the Institute for Condensed Matter Theory.

  • Accolades
  • Condensed Matter Theory
  • Condensed Matter Physics
  • Urbana Style

Physics Professor Smitha Vishveshwara has been elected a Fellow of the American Physical Society (APS) “for pioneering theory of quantum dynamics in nonequilibrium systems and novel phenomena in cold Bose gases.”

Vishveshwara is a theoretical condensed matter physicist with broad research interests in non-equilibrium and strongly correlated systems at all scales, from subatomic to cosmic. A common thread throughout her work is the characterization of emergent phenomena in quantum states of matter—including superconductivity, superfluidity, Mott insulators, topological systems, fractional quantum Hall states, and Majorana wires. In true “Urbana style,” Vishveshwara’s collaborations at Illinois and beyond, often involving close rapport with experimental colleagues, have produced viable experimental stratagems and identified clear signatures that characterize particular states of matter.