Virginia Lorenz

Associate Professor


Virginia Lorenz

Primary Research Area

  • AMO / Quantum Physics
337A Loomis Laboratory

For more information


Professor Virginia (Gina) Lorenz received her B.A. in physics magna cum laude and mathematics in 2001 and completed her Ph.D. in physics in 2007 at the University of Colorado at Boulder. Her thesis work focused on measuring and modelling the transition from reversible to irreversible dephasing of electronic coherence in dense atomic vapors. From 2007-2009 she was a postdoctoral researcher in the Department of Atomic and Laser Physics at the University of Oxford, where she worked on implementations of quantum memories in atomic and solid-state systems. From 2009-2014, she was an assistant professor in the Department of Physics and Astronomy at the University of Delaware. She joined the Department of Physics at the University of Illinois at Urbana-Champaign in 2015, where her research group performs experiments in quantum optics, atomic and molecular spectroscopy, and optical magnetometry.

Research Statement

Professor Lorenz's research group performs experiments in three major areas: quantum optics, atomic and molecular spectroscopy, and optical magnetometry.

Photonic quantum state characterization and engineering

The ability to create and control quantum states of light is important for quantum computation and quantum communication applications. We are exploring the use of standard, commercially available polarization-maintaining fiber (PMF) as a simple source of photon-pairs. PMF is an efficient generator of photon pairs and its large birefringence yields a 60THz detuning of the photon' phase-matched wavelengths from the pump, thus almost eliminating contamination due to photons produced from Raman scattering, which is an issue in other types of fiber sources. The joint spectral properties of the photon pair can be tailored by an appropriate choice of pump bandwidth and fiber length. We are implementing a newly developed stimulated-emission-based scheme to measure joint properties of the photon-pairs.

Generation, storage and retrieval of THz bandwidth quantum states

An essential capability for quantum computation and quantum communication is the synchronization of multiple sub-device elements, which requires a so-called quantum memory to store and retrieve information carried by photons. We are applying an off-resonance Raman protocol in atomic barium vapor to store and retrieve THz bandwidth quantum states. The broad bandwidth of the involved fields permits the characterization and optimization of storage and retrieval using spectral shaping, and enables us to study the spectral properties of nonclassical correlations between the photons and the excitations in the atomic ensemble. Barium has a strong transition at the fortuitous wavelength of 1500 nm, meaning it can store telecom wavelength photons directly. We are characterizing the states that the memory stores and retrieves using new techniques based on stimulated emission.

Development of spectroscopic techniques to probe coherence dynamics

Quantum applications such as the photon-pair source and quantum memory described above utilize single-photon detection and coincidence counting to quantify correlations. These tools can in turn be used to understand the dynamics of the materials from which the photons are generated. From the spectroscopy perspective, the motivation is to understand complex systems such as molecular liquids, in which inhomogeneous broadening dominates and multiple states couple to each other, in order to harness the chemical dynamics. To that end, we are developing single-excitation, single-photon-level techniques to understanding the complex structural correlations and environmental conditions surrounding molecules in liquids. We are exploring the capabilities of transient coherent Raman scattering in measuring the dynamics of liquid mixtures and the possibilities for using coincidence detection to measure vibrational energy redistribution, a complex phenomenon due to the intricate couplings and variety of timescales involved.

Optical magnetometry of magnetic materials

In the context of classical information storage and processing, spintronics, which uses the spin of the electron as an information carrier, holds promise for the creation of reliable, energy-efficient, easily scalable resources for next-generation computing. One method to manipulate electron spin is via the spin-orbit interaction, in which an electric current exerts a torque on the magnetization, and recently the implementation of spin-orbit-interaction induced switching in heavy metal (HM) / ferromagnetic metal (FM) bilayers has attracted great attention. Although beneficial effects have been successfully demonstrated, researchers are still debating the underlying principles, as to whether the dominating spin-orbit interaction (SOI) arises from the HM/FM interface due to the Rashba effect or from the bulk of the HM due to the spin Hall effect. We have developed a magneto-optic Kerr effect magnetometer that is capable of detecting SOI induced magnetization reorientation. Using this technique, we are studying and quantifying the bulk and interface contributions to spin-orbit interaction in a variety of materials.

Research Honors

  • Dean's Award for Excellence in Research (2020)

Semesters Ranked Excellent Teacher by Students

Fall 2020PHYS 403
Spring 2020PHYS 403
Fall 2019PHYS 403
Fall 2018PHYS 403
Fall 2017PHYS 403
Spring 2017PHYS 403
Fall 2016PHYS 403
Spring 2016PHYS 403

Selected Articles in Journals

Related news

  • Outreach

Over the course of three days, the festival featured the work of over fifty contributors. It was attended by nearly a hundred people each day. During each of the festival’s four themed sessions, videos, conversation, and live performances took place in rapid succession. In the dialogue that emerged, the boundaries between disciplines blurred, as scientists danced their research, played their data as sound, and discussed favorite pieces of art, challenging their colleagues to do the same—sometimes in real time. Artists, on the other hand, explained particle physics models through textiles, magnetism through dance, and physics fundamentals through comic books.

  • Education

When Physics senior lecturer Eugene Colla begins remotely teaching his Modern Experimental Physics course in June, he’ll be ready. Colla and his co-instructor, Prof. Virginia (Gina) Lorenz, collaborated with physics teaching lab specialist, Jack Boparai, and a team of teaching assistants to successfully convert the course to virtual instruction midway through spring semester in response to COVID-19.

Online conversion was no small feat for Colla, who has taught Physics 403 since 2004 and has watched the class size more than double in that time. The spring semester saw 28 students, including three exchange students from the United Kingdom.

  • Research

Researchers at the University of Illinois at Urbana-Champaign have constructed a quantum-mechanical state in which the colors of three photons are entangled with each other. The state is a special combination, called a W state, that retains some entanglement even if one of the three photons is lost, which makes it useful for quantum communication. Such entangled states also enable novel quantum applications and tests of fundamental physics. 

The uniqueness of this work is that the researchers used color, or the energy of the photons, as the entangling degree of freedom, while previous work used polarization. The energy of a photon cannot be easily changed, which reduces the possibility of errors when the energy-entangled W state is propagating over a long distance. The state was verified for the first time by measuring information about the two-photon sub-systems. Their findings are published in Physical Review Letters.
  • Research
  • Atomic, Molecular, and Optical Physics

Physicists at the University of Illinois at Urbana-Champaign have observed a magnetic phenomenon called the “anomalous spin-orbit torque” (ASOT) for the first time. Professor Virginia Lorenz and graduate student Wenrui Wang, now graduated and employed as an industry scientist, made this observation, demonstrating that there exists competition between what is known as spin-orbit coupling and the alignment of an electron spin to the magnetization. This can be thought of as analogous to the anomalous Hall effect (AHE).