Eduardo Fradkin elected to National Academy of Sciences

Celia Elliott
4/30/2013

The National Academy of Sciences has elected to membership Eduardo H. Fradkin, Professor of Physics and director of the Institute for Condensed Matter Physics at the University of Illinois at Urbana-Champaign, for his seminal contributions to theoretical condensed matter physics. Joining Fradkin in the 2013 class is Professor of Chemistry and of Physics Martin Gruebele and Professor of Chemistry Sharon Hammes-Schiffer.

Fradkin is internationally recognized for ground-breaking work at the interface between quantum field theory and condensed matter physics. He pioneered the use of concepts from condensed matter physics and statistical physics, such as order parameters and phase diagrams, to problems of quantum field theory and high energy physics.

Perhaps his most important contribution in this area was the proof that when matter fields carry the fundamental unit of charge, the Higgs and confinement phases of gauge theories are smoothly connected to each other and are as different as a liquid is from a gas. This result remains one of the cornerstones of our understanding of the phases of gauge theories and represents a lasting contribution to elementary particle physics.

Fradkin was one of the first theorists to use gauge theory concepts in the theory of spin glasses and to use concepts of chaos and non-linear systems in equilibrium statistical mechanics of frustrated systems. Fradkin also pioneered the use of Dirac fermions for condensed matter physics problems, particularly in two space dimensions. A prime example is his work on Dirac fermions on random fields, which is now regarded as the universality class of the transition between quantum Hall plateaus in the integer Hall effect. This work is important for the description of quasiparticles in disordered d-wave superconductors and in the recently discovered topological insulator materials.

A major achievement has been the development of the fermion Chern–Simons field theory of the fractional quantum Hall effect, which has played a central role in the current research effort in this exciting problem. He has also recently developed a theory of electronic liquid crystal phases in strongly correlated systems and formulated a mechanism of high-temperature superconductivity based on this new concept. He is also a leader in the theory of topological phases in condensed matter and on the role of quantum entanglement at quantum critical points.

Fradkin received his Licenciado (master's) degree in physics from Universidad de Buenos Aires (Argentina) and his PhD in physics from Stanford University in 1979. He came to the University of Illinois in 1979 as a postdoctoral research associate and became an assistant professor of physics at Illinois in 1981. He was promoted to associate professor in 1984, and became a full professor in 1989.

Fradkin is a fellow of the American Academy of Arts and Sciences, a Simon Guggenheim Foundation fellow, and a fellow of the American Physical Society.

About the National Academy of Sciences

Established by President Lincoln in 1863, the National Academy of Sciences of the United States is charged with providing independent, objective advice to the nation on matters related to science and technology. Scientists are elected by their peers to membership in the NAS for outstanding contributions to research. The NAS is committed to furthering science in the United States, and its members are active contributors to the international scientific community.

Membership is a widely accepted mark of excellence in science and is considered one of the highest honors that a scientist can receive. A total of 84 new members and 21 foreign associates from 14 countries were elected this year in recognition of their distinguished and continuing achievements in original research.

 

Recent News

  • In the Media

Walking to school as a child, UC San Diego visiting professor Smitha Vishveshwara asked her father, a black hole physicist, what he did for a living.

“He’d say, ‘Oh, I show that you can’t really kick a black hole.’ He’d be very playful,” said Vishveshwara, who lives in Solana Beach. “What he really meant was that he showed that black holes were stable entities.”

Through her father’s work, she learned about Margaret Burbidge, an influential astronomer, astrophysicist and the first director of UC San Diego’s Center for Astrophysics and Space Sciences. Coming full circle, Vishveshwara now serves as the university’s Margaret Burbidge visiting professor of physics.

  • Education

When Physics senior lecturer Eugene Colla begins remotely teaching his Modern Experimental Physics course in June, he’ll be ready. Colla and his co-instructor, Prof. Virginia (Gina) Lorenz, collaborated with physics teaching lab specialist, Jack Boparai, and a team of teaching assistants to successfully convert the course to virtual instruction midway through spring semester in response to COVID-19.

Online conversion was no small feat for Colla, who has taught Physics 403 since 2004 and has watched the class size more than double in that time. The spring semester saw 28 students, including three exchange students from the United Kingdom.

  • Research Funding

The Gordon and Betty Moore Foundation, through its Emergent Phenomena in Quantum Systems Initiative (EPiQS), has awarded substantial research funding to two experimental condensed matter physicists at the University of Illinois at Urbana-Champaign. Physics Professors Peter Abbamonte and Vidya Madhavan will receive EPiQS Experimental Investigator awards of $1.6 million each over the next five years.

EPiQS prioritizes high-risk, high-reward fundamental research programs in quantum materials, to foster scientific breakthroughs. EPiQS experimental investigators have the freedom to pursue challenging and novel research directions of the scientists’ own choosing.

  • research

Researchers from the University of Illinois at Urbana-Champaign’s Grainger College of Engineering have experimentally demonstrated a new way to transport energy even through wave-guides that are defective and even if the disorder is a transient phenomenon in time. This work could lead to much more robust devices that continue to operate in spite of damage.

Gaurav Bahl, associate professor in mechanical science and engineering, and Taylor Hughes, physics professor, published their findings in Nature Communications. This important work was led by postdoctoral researcher Inbar Grinberg, also in mechanical science and engineering.