Eduardo Fradkin elected to National Academy of Sciences

Celia Elliott
4/30/2013

The National Academy of Sciences has elected to membership Eduardo H. Fradkin, Professor of Physics and director of the Institute for Condensed Matter Physics at the University of Illinois at Urbana-Champaign, for his seminal contributions to theoretical condensed matter physics. Joining Fradkin in the 2013 class is Professor of Chemistry and of Physics Martin Gruebele and Professor of Chemistry Sharon Hammes-Schiffer.

Fradkin is internationally recognized for ground-breaking work at the interface between quantum field theory and condensed matter physics. He pioneered the use of concepts from condensed matter physics and statistical physics, such as order parameters and phase diagrams, to problems of quantum field theory and high energy physics.

Perhaps his most important contribution in this area was the proof that when matter fields carry the fundamental unit of charge, the Higgs and confinement phases of gauge theories are smoothly connected to each other and are as different as a liquid is from a gas. This result remains one of the cornerstones of our understanding of the phases of gauge theories and represents a lasting contribution to elementary particle physics.

Fradkin was one of the first theorists to use gauge theory concepts in the theory of spin glasses and to use concepts of chaos and non-linear systems in equilibrium statistical mechanics of frustrated systems. Fradkin also pioneered the use of Dirac fermions for condensed matter physics problems, particularly in two space dimensions. A prime example is his work on Dirac fermions on random fields, which is now regarded as the universality class of the transition between quantum Hall plateaus in the integer Hall effect. This work is important for the description of quasiparticles in disordered d-wave superconductors and in the recently discovered topological insulator materials.

A major achievement has been the development of the fermion Chern–Simons field theory of the fractional quantum Hall effect, which has played a central role in the current research effort in this exciting problem. He has also recently developed a theory of electronic liquid crystal phases in strongly correlated systems and formulated a mechanism of high-temperature superconductivity based on this new concept. He is also a leader in the theory of topological phases in condensed matter and on the role of quantum entanglement at quantum critical points.

Fradkin received his Licenciado (master's) degree in physics from Universidad de Buenos Aires (Argentina) and his PhD in physics from Stanford University in 1979. He came to the University of Illinois in 1979 as a postdoctoral research associate and became an assistant professor of physics at Illinois in 1981. He was promoted to associate professor in 1984, and became a full professor in 1989.

Fradkin is a fellow of the American Academy of Arts and Sciences, a Simon Guggenheim Foundation fellow, and a fellow of the American Physical Society.

About the National Academy of Sciences

Established by President Lincoln in 1863, the National Academy of Sciences of the United States is charged with providing independent, objective advice to the nation on matters related to science and technology. Scientists are elected by their peers to membership in the NAS for outstanding contributions to research. The NAS is committed to furthering science in the United States, and its members are active contributors to the international scientific community.

Membership is a widely accepted mark of excellence in science and is considered one of the highest honors that a scientist can receive. A total of 84 new members and 21 foreign associates from 14 countries were elected this year in recognition of their distinguished and continuing achievements in original research.

 

Recent News

  • Research
  • Atomic, Molecular, and Optical Physics
  • Condensed Matter Theory

A team of experimental physicists at the University of Illinois at Urbana-Champaign have made the first observation of a specific type of TI that’s induced by disorder. Professor Bryce Gadway and his graduate students Eric Meier and Alex An used atomic quantum simulation, an experimental technique employing finely tuned lasers and ultracold atoms about a billion times colder than room temperature, to mimic the physical properties of one-dimensional electronic wires with precisely tunable disorder. The system starts with trivial topology just outside the regime of a topological insulator; adding disorder nudges the system into the nontrivial topological phase.

  • Accolades
  • Condensed Matter Physics

Professor Nadya Mason has been elected a Fellow of the American Physical Society (APS) “for seminal contributions to the understanding of electronic transport in low dimensional conductors, mesoscopic superconducting systems, and topological quantum materials.”

Mason is an experimental condensed matter physicist who has earned a reputation for her deep-sighted and thorough lines of attack on the most pressing problems in strongly correlated nanoscale physics.

  • Alumni News
  • In the Media
  • Biological Physics

These days, Cissé, a newly minted American citizen, is breaking paradigms instead of electronics. He and colleagues are making movies using super-resolution microscopes to learn how genes are turned on. Researchers have spent decades studying this fundamental question.

Cissé thinks physics can help biologists better understand and predict the process of turning genes on, which involves copying genetic instructions from DNA into RNA. His work describes how and when proteins congregate to instigate this process, which keeps cells functioning properly throughout life.

  • Outreach
  • Quantum Information Science

Two University of Illinois faculty members are at the White House in Washington, D.C., today, attending the Advancing American Leadership in QIS Summit.

Quantum Information Science (QIS) and Technology has emerged over the last decade as one of the hottest topics in physics. Researchers collaborating across physics, engineering, and computer science have shown that quantum mechanics—one of the most successful theories of physics that explains nature from the scale of tiny atoms to massive neutron stars—can be a powerful platform for information processing and technologies that will revolutionize security, communication, and computing.