Nobel laureate Sir Anthony J. Leggett turns 80! Celebrate with us!

Siv Schwink
3/29/2018

Sir Anthony J. Leggett. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
Sir Anthony J. Leggett. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
Sir Anthony Leggett, winner of the 2003 Nobel Prize in Physics and the John D. and Catherine T. MacArthur Professor of Physics at the University of Illinois at Urbana Champaign, turned 80 years old on March 26. To celebrate, the Department of Physics is hosting a physics symposium in his honor, with participants coming from around the world. The symposium, “AJL@80: Challenges in Quantum Foundations, Condensed Matter Physics and Beyond,” is targeted for physicists and requires pre-registeration. It begins tonight, Thursday evening, and will go through Saturday evening (March 29 – 31, 2018).

In conjunction with the symposium, two public presentations will be offered back-to-back on Friday, March 30, starting at 7:30 p.m., at the I Hotel and Conference Center’s Illinois Ballroom. (1900 S. First St., Champaign). There is no admission fee and registration is not required—all are welcome.

First up Friday evening starting at 7:30 p.m. will be the premier performance of a theatrical production entitled, “Quantum Voyages.” This work, the collaborative effort of U of I physics professor Smitha Vishveshwara and U of I theatre studies professor Latrelle Bright, tells the story of the quantum realm.

Starting at 8:30 p.m., U of I alumnus and University of California, Santa Barbara Professor of Physics Matthew Fisher will give a popular talk entitled,“Are We Quantum Computers, or Merely Clever Robots?”

A public reception will follow at 9:30 p.m.

In honoring Leggett, this event also celebrates his legacy. Three generations of physicists are represented in the program: Fisher is a former doctoral student of Leggett; and Vishveshwara is a former doctoral student of Fisher.

About Sir Anthony J. Leggett

Sir Anthony J. Leggett, the John D. and Catherine T. MacArthur Professor and Center for Advanced Study Professor of Physics, has been a faculty member at Illinois since 1983. He is widely recognized as a world leader in the theory of low-temperature physics, and his pioneering work on superfluidity was recognized by the 2003 Nobel Prize in Physics. He is a member of the National Academy of Sciences, the American Philosophical Society, the American Academy of Arts and Sciences, the Russian Academy of Sciences (foreign member), and is a Fellow of the Royal Society (U.K.), the American Physical Society, and the American Institute of Physics. He is an Honorary Fellow of the Institute of Physics (U.K.). He was knighted (KBE) by Queen Elizabeth II in 2004 "for services to physics."

Professor Leggett has shaped the theoretical understanding of normal and superfluid helium liquids and other strongly coupled superfluids. He set directions for research in the quantum physics of macroscopic dissipative systems and use of condensed systems to test the foundations of quantum mechanics. His research interests lie mainly within the fields of theoretical condensed matter physics and the foundations of quantum mechanics. He has been particularly interested in the possibility of using special condensed-matter systems, such as Josephson devices, to test the validity of the extrapolation of the quantum formalism to the macroscopic level; this interest has led to a considerable amount of technical work on the application of quantum mechanics to collective variables and in particular on ways of incorporating dissipation into the calculations. He is also interested in the theory of superfluid liquid 3He, especially under extreme nonequilibrium conditions, in high-temperature superconductivity,in the low-temperature properties of glasses and in topological quantum computing,particularly in so-called "p+ip" Fermi superfluids.

 

About the performance, “Quantum Voyages”

by Smitha Vishveshwara and Latrelle Bright, both of University of Illinois at Urbana-Champaign in collaboration with a Quantum-Theater crew and with cameo appearance by local physicists Brian DeMarco, Anthony Leggett, Virgina Lorenz, Nadya Mason, Dale Van Harlingen

Illinois physics professor Gina Lorenz, center, playing a quantum sage, uses poetry to explain concepts of light in the interdisciplinary performance piece 'Quantum Voyages.' It was created by Illinois physics professor Smitha Vishveshwara and theatre professor Latrelle Bright to offer a look at basic concepts of quantum physics.

Courtesy Smitha Vishveshwara
Illinois physics professor Gina Lorenz, center, playing a quantum sage, uses poetry to explain concepts of light in the interdisciplinary performance piece 'Quantum Voyages.' It was created by Illinois physics professor Smitha Vishveshwara and theatre professor Latrelle Bright to offer a look at basic concepts of quantum physics. Courtesy Smitha Vishveshwara
Guided by Sapienza, the spirit of knowledge, two voyagers enter the microscopic realm of atomic landscapes and quantum conundrums to discover a magnificent and baffling world, foreign to every day human experience. As in epic adventures and fairy tales, like Ovid’s Metamorphosis or the Nutcracker ballet, the voyagers explore land after land, each tickling the viewer’s imagination and, unlike fairy tales, offering glimpses of a world we believe actually resides around us. The trio confront terrifying prospects of being dead and alive at once, encounter electrons acting as waves, are pelleted by photons, glide through diaphanous orbitals of atoms, precess in magnetic resonance imaging machines, levitate above superconducting surfaces, and navigate disordered quantum terrains within complex materials. The two voyagers emerge awakened to the miniscule landscapes within us and to the affirmation that things are never what they seem.

There will be a second performance of “Quantum Voyages” on April 4 at Beckman Institute.  Maeve Reilly is the contact person for that performance. Reilly, Maeve J mjreilly@illinois.edu.

 

About the popular talk, “Are We Quantum Computers, or Merely Clever Robots?”

by Professor Matthew Fisher of the University of California, Santa Barbara

UCSB Professor and U of I alumnus Matthew Fisher
UCSB Professor and U of I alumnus Matthew Fisher
Designing and building quantum computers in the laboratory is now a billion-dollar enterprise. But might we, ourselves, be quantum computers, rather than just clever quantum engineers? A commonly held belief is that quantum information processing is not possible in the warm, wet brain, because it requires the fulfillment of so many unrealizable conditions. My strategy is one of reverse engineering, seeking to identify the biochemical substrate and mechanisms that could host such putative quantum processing. Remarkably, a specific neural qubit and a unique collection of ions, molecules, and enzymes can be identified, illuminating an apparently single path toward nuclear-spin quantum processing in the brain.

 

 

 

Recent News

  • Research Funding

The United States Department of Energy awards $2.2 million to the FAIR Framework for Physics-Inspired Artificial Intelligence in High Energy Physics project, spearheaded by the National Center for Supercomputing Applications’ Center for Artificial Intelligence Innovation (CAII) and the University of Illinois at Urbana-Champaign. The primary focus of this project is to advance our understanding of the relationship between data and artificial intelligence (AI) models by exploring relationships among them through the development of FAIR (Findable, Accessible, Interoperable, and Reusable) frameworks. Using High Energy Physics (HEP) as the science driver, this project will develop a FAIR framework to advance our understanding of AI, provide new insights to apply AI techniques, and provide an environment where novel approaches to AI can be explored.

This project is an interdisciplinary, multi-department, and multi-institutional effort led by Eliu Huerta, principal investigator, director of the CAII, senior research scientist at NCSA, and faculty in Physics, Astronomy, Computational Science and Engineering and the Illinois Center for Advanced Studies of the Universe at UIUC. Alongside Huerta are co-PIs from Illinois: Zhizhen Zhao, assistant professor of Electrical & Computer Engineering and Coordinated Science Laboratory; Mark Neubauer, professor of physics, member of Illinois Center for Advanced Studies of the Universe, and faculty affiliate in ECE, NCSA, and the CAII; Volodymyr Kindratenko, co-director of the CAII, senior research scientist at NCSA, and faculty at ECE and Computer Science; Daniel S. Katz, assistant director of Scientific Software and Applications at NCSA, faculty in ECE, CS, and School of Information Sciences. In addition, the team is joined by co-PIs Roger Rusack, professor of physics at the University of Minnesota; Philip Harris, assistant professor of physics at MIT; and Javier Duarte, assistant professor in physics at UC San Diego.

  • Research

This year, 31 research teams have been awarded a combined 5.87 million node hours on the Summit supercomputer, the OLCF’s 200 petaflop IBM AC922 system. The research performed through the ALCC program this year will range from the impact of jets on offshore wind farms to the structure and states of quantum materials to the behavior of plasma within fusion reactors—all computationally intensive scientific applications necessitating the power of a large-scale supercomputer like Summit.

  • In Memoriam

Jim was widely viewed as one of the best teachers in the Physics Department. He was frequently listed in the University’s roster of excellent instructors and won awards for his classroom skills. In 2012, he received the Arnold T. Nordsieck Physics Award for Teaching Excellence for his “patient, insightful, and inspiring physics teaching, one problem at a time, that encourages undergraduate students to take their understanding to a new level.”

  • Research

Now a team of theoretical physicists at the Institute for Condensed Matter Theory (ICMT) in the Department of Physics at the University of Illinois at Urbana-Champaign, led by Illinois Physics Professor Philip Phillips, has for the first time exactly solved a representative model of the cuprate problem, the 1992 Hatsugai-Kohmoto (HK) model of a doped Mott insulator.