New algorithm could help find new physics

Siv Schwink

Inverse method takes wave functions and solves for Hamiltonians

Professor Bryan Clark and graduate student Eli Chertkov pose in the common room of the Institute for Condensed Matter Theory. Photo by Siv Schwink, Department of Physics, University of Illinois at Urbana-Champaign
Professor Bryan Clark and graduate student Eli Chertkov pose in the common room of the Institute for Condensed Matter Theory. Photo by Siv Schwink, Department of Physics, University of Illinois at Urbana-Champaign
Scientists at the University of Illinois at Urbana-Champaign have developed an algorithm that could provide meaningful answers to condensed matter physicists in their searches for novel and emergent properties in materials. The algorithm, invented by physics professor Bryan Clark and his graduate student Eli Chertkov, inverts the typical mathematical process condensed matter physicists use to search for interesting physics. Their new method starts with the answer—what kinds of physical properties would be interesting to find—and works backward to the question—what class of materials would host such properties.

Inverse problem solving isn’t a new technique in classical physics, but this algorithm represents one of the first successful examples of an inverse problem solving method with quantum materials. And it could make searching for interesting physics a more streamlined and deliberate process for many scientists. More physicists are working in condensed matter than any other subfield of physics—the rich diversity of condensed matter systems and phenomena provide ample unsolved problems to explore, from superconductivity and superfluidity to magnetism and topology. Experimentalists probe the macro-and microscopic properties of materials to observe the behavior and interactions of particles in materials under a strict set of controls. Theoretical condensed matter physicists, on the other hand, work to develop mathematical models that predict or explain the fundamental laws that govern these behaviors and interactions.

The field of theoretical condensed matter physics has the well-earned reputation for being esoteric and difficult for the lay person to decipher, with its focus on understanding the quantum mechanics of materials. The process of writing and solving condensed matter equations is extremely intricate and meticulous. That process generally starts with a Hamiltonian—a mathematical model that sums up the energies of all the particles in the system.

Clark explains, “For a typical condensed matter problem, you start with a model, which comes out as a Hamiltonian, then you solve it, and you end up with a wave function—and you can see the properties of that wave function and see whether there is anything interesting. This algorithm inverts that process. Now, if you know the desired type of physics you would like to study, you can represent that in a wave function, and the algorithm will generate all of the Hamiltonians—or the specific models—for which we would get that set of properties. To be more exact, the algorithm gives us Hamiltonians with that wave function as an energy eigenstate.”  

Clark says the algorithm gives a new way to study physical phenomena such as superconductivity.

“Typically, you would guess Hamiltonians that are likely to be superconducting and then try to solve them. What this algorithm - in theory - will allow us to do is to write down a wave function that we know superconducts and then automatically generate all of the Hamiltonians or the specific models that give that wave function as their solution. Once you have the Hamiltonians, in some sense, that gives you all the other properties of the system—the excitation spectrum, all the finite temperature properties. That requires some more steps once you have the Hamiltonian, so we didn’t improve that part of the research process. But what we did, we found a way to find interesting models, interesting Hamiltonians.”

Chertkov adds, “There are lots of wave functions people have written down for which there are no known Hamiltonians—maybe 50 years worth. Now we can take any of these wave functions and ask if any Hamiltonians give those as eigenstates and you may end up with one model, no models, or many.  For example, we are interested in spin-liquid wave functions, highly entangled quantum states with interesting topological properties. Theorists have constructed many spin-liquid wave functions, but don’t know which Hamiltonians give them. In the future, our algorithm should let us find these Hamiltonians.”

Clark and Chertkov tested the algorithm on wave functions related to frustrated magnetism, a topic that presents interesting physics with many open questions. Frustrated magnetism occurs in a class of materials that is insulating, so the electrons don’t move around, but their spins interact.  Clark explains one such wave function they tested, “The electron spins in a frustrated magnet want to be anti-aligned, like the north and south on a magnet, but can’t because they live on triangles. So we make a wave function out of a linear-superposition of all of these frustrated states and we turn the crank of this algorithm, and ask, given this wavefunction, which is an interesting quantum state on a frustrated magnet, are there Hamiltonians that would give it. And we found some.”

Chertkov says the results of the algorithm could point experimentalists in the right direction to find interesting new physics: “That would hopefully be one way it would be used. You pick a wave function that has some kind of physics that you care about and you see what sort of interactions can give you that sort of physics, and hopefully then the models you find through this method can be looked for in experiments. And it turns out you find many models with our method.”

Clark sums up, “This has inverted the part of the process where we were sort of hunting in the dark. Before, you could say, we’re going to try lots of models until we find something interesting. Now you can say, this is the interesting thing we want, let’s turn the crank on this algorithm and find a model that gives that.”

These findings were published online on July 27, 2018, in Physical Review X (PRX), in the article “Computational inverse method for constructing spaces of quantum models from wave functions.”

This work was supported by the US Department of Energy Office of Science’s SciDAC program, and is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation and the State of Illinois. The conclusions presented are those of the researchers and not necessarily those of the funding agencies.

Recent News

  • Research
  • Condensed Matter Physics
  • Condensed Matter Experiment
  • Condensed Matter Theory

One of the greatest mysteries in condensed matter physics is the exact relationship between charge order and superconductivity in cuprate superconductors. In superconductors, electrons move freely through the material—there is zero resistance when it’s cooled below its critical temperature. However, the cuprates simultaneously exhibit superconductivity and charge order in patterns of alternating stripes. This is paradoxical in that charge order describes areas of confined electrons. How can superconductivity and charge order coexist?  

Now researchers at the University of Illinois at Urbana-Champaign, collaborating with scientists at the SLAC National Accelerator Laboratory, have shed new light on how these disparate states can exist adjacent to one another. Illinois Physics post-doctoral researcher Matteo Mitrano, Professor Peter Abbamonte, and their team applied a new x-ray scattering technique, time-resolved resonant soft x-ray scattering, taking advantage of the state-of-the-art equipment at SLAC. This method enabled the scientists to probe the striped charge order phase with an unprecedented energy resolution. This is the first time this has been done at an energy scale relevant to superconductivity.

  • Alumni News
  • In the Media

Will Hubin was one of those kids whose wallpaper and bed sheets were covered in airplanes and who loved building model airplanes. By the time he took his first flight in the late 1940s, he was hooked.

Now, he shares his passion for planes with children by taking them for their first flight, at no charge, in his four-seat 2008 Diamond DA-40 aircraft through the local Experimental Aircraft Association’s Young Eagles program.

“It’s a lot of fun and pretty rewarding. Anyone who loves flying likes to introduce others to it. It’s true of anything, any hobbyist. Some will talk constantly but they’re ecstatic,” said Hubin, a retired Kent State University physics professor.

Hubin learned to fly in 1962 when he was earning a doctorate in physics at the University of Illinois and has been flying ever since, adding commercial, instrument, instructor, multi-engine and seaplane ratings.

  • Research
  • Theoretical Biological Physics
  • Biological Physics
  • Biophysics

While watching the production of porous membranes used for DNA sorting and sequencing, University of Illinois researchers wondered how tiny steplike defects formed during fabrication could be used to improve molecule transport. They found that the defects – formed by overlapping layers of membrane – make a big difference in how molecules move along a membrane surface. Instead of trying to fix these flaws, the team set out to use them to help direct molecules into the membrane pores.

Their findings are published in the journal Nature Nanotechnology.

Nanopore membranes have generated interest in biomedical research because they help researchers investigate individual molecules – atom by atom – by pulling them through pores for physical and chemical characterization. This technology could ultimately lead to devices that can quickly sequence DNA, RNA or proteins for personalized medicine.

  • In Memoriam

We are saddened to report that John Robert Schrieffer, Nobel laureate and alumnus of the Department of Physics at the University of Illinois at Urbana-Champaign, passed away on July 27, 2019, in Tallahassee, Florida. He was 88 years old.

Schrieffer was the “S” in the famous BCS theory of superconductivity, one of the towering achievements of 20th century theoretical physics, which he co-developed with his Ph.D advisor Professor John Bardeen and postdoctoral colleague Dr. Leon N. Cooper. At the time that Schrieffer began working with Bardeen and Cooper, superconductivity was regarded as one of the major challenges in physics. Since the discovery of the hallmark feature of superconductivity in 1911—the zero resistance apparently experienced by a current in a metal at temperatures near absolute zero—a long list of famous theoretical physicists had attempted to understand the phenomenon, including Albert Einstein, Niels Bohr, Richard Feynman, Lev Landau, Felix Bloch, Werner Heisenberg and John Bardeen himself (who was awarded the Nobel Prize for his co-invention of the transistor at around the time that Schrieffer began working with him in 1956).