CPLC team continues Schulten's legacy: first-ever atomic-scale model of a bacterial organelle simulates photosynthetic energy conversion

Diana Yates for the Illinois News Bureau
11/14/2019

Researchers used supercomputers to construct a 136 million-atom model of the chromatophore, a primitive light-harvesting structure in purple bacteria. The simulated organelle behaved just as it does in nature, the team reports.

Graphic by Christopher Maffeo, Department of Physics, University of Illinois at Urbana-Champaign
Researchers used supercomputers to construct a 136 million-atom model of the chromatophore, a primitive light-harvesting structure in purple bacteria. The simulated organelle behaved just as it does in nature, the team reports. Graphic by Christopher Maffeo, Department of Physics, University of Illinois at Urbana-Champaign
Scientists have simulated every atom of a light-harvesting structure in a photosynthetic bacterium that generates energy for the organism. The simulated organelle behaves just like its counterpart in nature, the researchers report. The work is a major step toward understanding how some biological structures convert sunlight into chemical energy, a biological innovation that is essential to life.

The researchers report their findings in the journal Cell.

The team originally was led by University of Illinois Physics Professor Klaus Schulten and the work continued after Schulten’s death in 2016. The study fulfills, in part, Schulten’s decades-long dream of discovering the mechanisms by which atomic-level interactions build and animate living systems.

Schulten decided very early in his career to study photosynthetic systems, notes study co-author Melih Sener, a research scientist at the U. of I.’s Beckman Institute for Advanced Science and Technology, where much of the work was conducted. Schulten and Sener modeled the chromatophore, a primitive photosynthetic organelle that produces chemical energy in the form of a molecule known as ATP. That work involved a long-term collaboration with Neil Hunter from the University of Sheffield, who provided much of the experimental data.

“Schulten was a physicist; he wanted to understand biology at the physics level,” adds Illinois Biochemistry Professor and study co-author Emad Tajkhorshid. “But then he realized biology only works if you put all of the complexity into the model. And the only way to do that was with supercomputers.”

Over the years, Schulten recruited and supported collaborators at Illinois and elsewhere to help him tackle the challenge. The team constructed a 136 million-atom model of the chromatophore, an effort that required a colossal amount of supercomputer power over a period of four years. The work was conducted on the Titan and Summit supercomputers at the Oak Ridge National Laboratory in Knoxville, Tennessee; and on Blue Waters, housed at the National Center for Supercomputing Applications at Illinois.

The research team included, from left, Illinois Chemistry Professor and CPLC Co-Director Zaida Luthey-Schulten, Beckman Institute research programmer Barry Isralewitz, Chemistry Professor Taras Pogorelov, Physics Professor Aleksei Aksimentiev, University of Calgary Chemistry Professor Peter Tieleman, NCSA senior research programmer Jim Phillips, Illinois Physics postdoctoral researcher Christopher Maffeo, Beckman Institute senior research programmer John Stone, and Biochemistry Professor Emad Tajkhorshid. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
The research team included, from left, Illinois Chemistry Professor and CPLC Co-Director Zaida Luthey-Schulten, Beckman Institute research programmer Barry Isralewitz, Chemistry Professor Taras Pogorelov, Physics Professor Aleksei Aksimentiev, University of Calgary Chemistry Professor Peter Tieleman, NCSA senior research programmer Jim Phillips, Illinois Physics postdoctoral researcher Christopher Maffeo, Beckman Institute senior research programmer John Stone, and Biochemistry Professor Emad Tajkhorshid. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
Schulten and his colleagues had already conducted molecular simulations of many of the individual protein and lipid components of the chromatophore, which produces the ATP needed to power a living cell.

“The chromatophore has an antenna, a battery and a motor,” says study lead author Abhishek Singharoy. The antenna harvests light, the battery directs that energy to the motor and the motor cranks out ATP, he explains. Singharoy worked with Schulten at Illinois before accepting a professorship at Arizona State University, Tempe in 2017.

Figuring out how the system worked required putting all the parts together, comments Illinois Physics Professor Aleksei Aksimentiev, who guided the project to completion after Schulten’s death. This meant dissecting the chromatophore with every tool available to science, from laboratory experiments to electron microscopy, to programming innovations that broke down the computing challenge into manageable steps, Aksimentiev shares.

Once they had a working model of the chromatophore, the researchers watched simulations that revealed how the organelle functioned under different scenarios. They changed the concentration of salt in its environment, for example, to see how it coped with stress.

When they exposed their simulated organelle to conditions that it typically experiences in the cell, they were surprised by how it behaved. It immediately became less spherical, and certain proteins embedded in the membrane began to clump together.

“We started with a perfect sphere, but very rapidly it became imperfect, with flat areas and little areas with high curvatures,” Aksimentiev describes. “And all of that, our calculations reveal, has a biological role.”

The clumping proteins create patches of positive and negative charges that facilitate the distribution of electrons across the system, the researchers found. The electrons are ultimately swapped for protons, which drive an enzyme known as an ATP synthase, the motor that produces ATP.

“The chromatophore’s structure is like a circuit diagram,” Sener explains. “If you know how the energy and charges travel in it, you know how the machine works. The chromatophore is basically an electronic device.”

The study confirms that, at the atomic scale, physics drives biology, the researchers assert. The work will inform future studies of more complex energy-generating organelles in other microorganisms, and in plants and animals. And it will advance scientists’ understanding of nature’s solution to a perpetual human problem: how to efficiently extract energy from the environment without poisoning oneself.

The research was made possible through the National Institutes of Health Center for Macromolecular Modeling and Bioinformatics and the National Science Foundation Center for the Physics of Living Cells, both at the University of Illinois. The Research Corporation for Science Advancement and the Gordon and Betty More Foundation supported the work in Arizona. The findings are those of the researchers and not necessarily those of the funding agencies.

Aksimentiev and Tajkhorshid are affiliates of the Beckman Institute at Illinois.

Recent News

  • Research

An international team of researchers led by Paul Scherrer Institute postdoctoral researcher Niels Schröter now provide an important benchmark for how "strong" topological phenonena can be in a real material. Writing in Science, the team reports experiments in which they observed that, in the topological semimetal palladium gallium (PdGa), one of the most common classifiers of topological phenomena, the Chern number, can reach the maximum value that is allowed in any metallic crystal. That this is possible in a real material has never been shown before. Moreover, the team has established ways to control the sign of the Chern number, which might bring new opportunities for exploring, and exploiting, topological phenomena. Illinois Physics Professor Barry Bradlyn contributed to the theoretical work elucidating the team's experiments.

At the European Organization for Nuclear Research (CERN), over 200 physicists across dozens of institutions are collaborating on a project called COMPASS. This experiment (short for Common Muon and Proton Apparatus for Structure and Spectroscopy) uses CERN’s Super Proton Synchrotron to tear apart protons with a particle beam, allowing researchers to see the subatomic quarks and gluons that make up these building blocks of the universe. But particle beams aren’t the only futuretech in play – the experiments are also enabled by a heavy dose of supercomputing power.

New findings from physicists at the University of Illinois, in collaboration with researchers at The University of Tokyo and others, clarify the physics of coupling topological materials with simple, conventional superconductors.

Through a novel method they devised to fabricate bulk insulating topological insulator (TI) films on superconductor (SC) substrates, the researchers were able to more precisely test the proximity effect, or coupling when two materials contact one another, between TIs and SCs. They found that when the TI film is bulk insulating, no superconductivity is observed at the top surface, but if it is a metal, as in prior work, strong, long-range superconducting order is seen. The experimental efforts were led by physics Professor Tai-Chang Chiang and Joseph Andrew Hlevyack, postdoctoral researcher in Professor Chiang’s group, in collaboration with Professor James N. Eckstein’s group including Yang Bai, Professor Kozo Okazaki’s Lab at The U. of Tokyo, and five other institutes internationally. The findings are published in Physical Review Letters, which has been highlighted as a PRL Editors’ Suggestion.

  • Accolades

Illinois Physics Assistant Professor Barry Bradlyn has been selected for a 2020 National Science Foundation CAREER (Faculty Early Career Development) Award. This award is conferred annually in support of junior faculty who excel in the role of teacher-scholars by integrating outstanding research programs with excellent educational programs. Receipt of this award also reflects great promise for a lifetime of leadership within the recipients’ respective fields.

Bradlyn is a theoretical condensed matter physicist whose work studying the novel quantum properties inherent in topological insulators and topological semimetals has already shed new light on these extraordinary systems. Among his contributions, he developed a real-space formulation of topological band theory, allowing for the prediction of many new topological insulators and semimetals.