Researchers demonstrate transport of mechanical energy, even through damaged pathways

Michelle Huls Rice for Grainger Engineering
5/21/2020

University of Illinois at Urbana-Champaign Professor of Mechanical Science and Engineering Gaurav Bahl
University of Illinois at Urbana-Champaign Professor of Mechanical Science and Engineering Gaurav Bahl
University of Illinois at Urbana-Champaign Professor of Physics Taylor Hughes
University of Illinois at Urbana-Champaign Professor of Physics Taylor Hughes
Most technologies today rely on devices that transport energy in the form of light, radio, or mechanical waves. However, these wave-guiding channels are susceptible to disorder and damage, either in manufacturing or after they are deployed in harsh environments.

Researchers from the University of Illinois at Urbana-Champaign’s Grainger College of Engineering have experimentally demonstrated a new way to transport energy even through wave-guides that are defective and even if the disorder is a transient phenomenon in time. This work could lead to much more robust devices that continue to operate in spite of damage.

Gaurav Bahl, associate professor in mechanical science and engineering, and Taylor Hughes, physics professor, published their findings in Nature Communications. This important work was led by postdoctoral researcher Inbar Grinberg, also in mechanical science and engineering.

The research article, “Robust temporal pumping in a magneto-mechanical topological insulator,” details the demonstration of a topological pump, a system that produces on-demand robust transport of mechanical energy when it is periodically driven in time. The researchers built the topological pump using a one-dimensional magneto-mechanical artificial material, composed of springs, masses, and magnets.

The inspiration for the pump came from Nobel Prize-winning physicist David Thouless’ work published in 1983, in which he proposed a scheme to achieve quantized transport of single particles, such as electrons, through a periodic potential, such as a chain of atoms. The underlying principle is to make gradual, periodic modulations to the structure of the chain as a function of time. At the completion of each period of the pumping cycle, a single particle must enter the chain on one end, and simultaneously a single particle must exit the other end of the chain. This reliably occurs even if the chain of atoms has some moderate amount of disorder.

This type of system is termed a pump because its technical description evokes a vision of an Archimedes' screw, a hand-cranked water pump dating back to ancient Egypt, which is referenced in historical sources.

The Grainger researchers took Thouless’s idea and implemented it into a mechanical topological pump. A notable distinction is that Bahl and Hughes' pump transports mechanical energy, not particles or water, across the entire chain in one period of the pumping cycle. Moreover, the pump operates successfully even if the chain has significant amount of disorder in space or time. To complete the analogy to a water screw pump, the researchers powered their demonstration with a rotating crank shaft.

“Ultimately, we would like to extend this demonstration to produce similarly resilient wave-guides for light, sound, and electricity,” explains Bahl. “The dream is to put a signal in on one end of a one-dimensional channel, and have guaranteed transport to the other end, in a robust fashion whenever the user wants it. We believe that topological pumps are a great way to do that.”

Optical fiber and copper lines form the backbone of all our communication technologies. Presently, moderate damage along such communication channels – e.g. anything but complete disconnection – can reduce signal strength and even produce undesirable reflections, which adversely affect the amount of data that these channels can carry.

The research team believes that topological pumping could be a great solution in these scenarios.

Mao Lin, Wladimir A. Benalcazar, Christopher W. Peterson, and Cameron Harris were also collaborators on the article, which can be found in Nature Communications at https://www.nature.com/articles/s41467-020-14804-0.

Recent News

  • Diversity, Equity, & Inclusion
  • Outreach

FUTURE-MINDS-QB, a bridge program streamlining a path from a master’s degree at Fisk University, a historically Black university in Nashville, to a doctoral degree at University of Illinois Urbana-Champaign, has received a T32 training grant from the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health (NIH). The FUTURE-MINDS-QB program will provide rigorous training, a nurturing environment, and academic and professional mentorship for students from underrepresented ethnic, racial, and gender groups in quantitative biology and biomedical data sciences. Quantitative biology encompasses bioinformatics, computational biology, genomic biology, and biophysics. The program is currently accepting applications.

  • Research Funding

In the quest to uncover the mysteries of the gravitational universe, the Simons Foundation awarded Illinois Physics Professor Nicolás Yunes a Targeted Grant in Mathematical and Physical Sciences to study astrophysical and cosmological signatures of dynamical Chern-Simons (dCS) gravity. Yunes, who is the founding director of the Illinois Center for Advanced Studies of the Universe (ICASU), shares the $2 million award with Brown University Professor of Physics Stephon Alexander.

  • Outreach

Over the course of three days, the festival featured the work of over fifty contributors. It was attended by nearly a hundred people each day. During each of the festival’s four themed sessions, videos, conversation, and live performances took place in rapid succession. In the dialogue that emerged, the boundaries between disciplines blurred, as scientists danced their research, played their data as sound, and discussed favorite pieces of art, challenging their colleagues to do the same—sometimes in real time. Artists, on the other hand, explained particle physics models through textiles, magnetism through dance, and physics fundamentals through comic books.