Using a novel integrative computational technique, scientists from Northwestern and the University of Illinois at Urbana-Champaign (UIUC) were able to classify disease conditions at the molecular level using epigenomic data sets, according to a recent study published in Cell Reports.
The new approach, collaboratively developed by the authors from Northwestern and UIUC, is called DeCET (Decomposition and Classification of Epigenomic Tensors); it analyzes complex, heterogeneous data to identify epigenomic differences between tissue types, disease subtypes, and changes in cell type, or cellular differentiation, explained Debabrata Chakravarti, PhD, vice chair for translational research and the Anna Lapham Professor of Obstetrics and Gynecology and lead author of the study.
Written by Michelle Mohney for Northwestern Medicine
Northwestern University's Priyanka Saini, PhD, postdoctoral fellow in the Chakravarti Laboratory, and co-first author of the studyNorthwestern University's Debabrata Chakravarti, PhD, vice chair for translational research and the Anna Lapham Professor of Obstetrics and Gynecology, and co-senior author of the studyUsing a novel integrative computational technique, scientists from Northwestern and the University of Illinois at Urbana-Champaign (UIUC) were able to classify disease conditions at the molecular level using epigenomic data sets, according to a recent study published in Cell Reports.
The new approach, collaboratively developed by the authors from Northwestern and UIUC, is called DeCET (Decomposition and Classification of Epigenomic Tensors); it analyzes complex, heterogeneous data to identify epigenomic differences between tissue types, disease subtypes, and changes in cell type, or cellular differentiation, explained Debabrata Chakravarti, PhD, vice chair for translational research and the Anna Lapham Professor of Obstetrics and Gynecology and lead author of the study.
The epigenome — the collection of all modifications to histone proteins and genome that alter gene expression — carries essential instructions for specifying cellular identity, so therefore epigenomic assays can offer a robust diagnostic marker for a wide range of diseases, according to Chakravarti, also a professor of Pharmacology and assistant director of shared resources at the Robert H. Lurie Comprehensive Cancer Center. For example, the pattern of DNA methylation can classify primary and secondary central nervous system tumors, as well as identify the cell type of a cancer’s origin.
Jun Song, PhD, Founder Professor of Physics at UIUC and Grant Barish, MD, associate professor of Medicine in the Division of Endocrinology at Northwestern, were co-senior authors of the study, and Priyanka Saini, PhD, of Northwestern and Jacob Leistico of UIUC, were co-first authors of the study. Leistico led the algorithmic development, and Saini led the experimental work, building a synergistic team between the two institutions.
Schematic illustration of application of tensor decomposition of heterogenous epigenomic datasets separating normal uterine myometrium and leiomyoma disease subtypes. For details see Leistico, Saini et al, Cell Reports, ePub: March 30, 2021 Art design: Priyanka Saini, Debabrata Chakravarti, Feng FeiThe collaborative team of basic scientists, clinicians, and physicists conducted initial studies on uterine fibroids, or leiomyomas, which are non-cancerous tumors of uterine smooth muscle cells with limited treatment options that develop in up to 70 percent of women.
Scientists first performed epigenomic analysis of 25 normal uterine and 25 matched fibroid samples from patients. The team then used DeCET to analyze the data and identify key epigenomic features that could clearly distinguish normal myometrium tissue from leiomyoma disease states and disease subtypes.
Investigators next applied DeCET to “unknown” human samples to predict tissue status. The methodology accurately discriminated between normal and disease types and subtypes using the epigenomic signatures.
Finally, to demonstrate the general applicability of DeCET, the team extended their analysis using publicly available cancer epigenomic data sets and successfully classified other diseases, such as breast and prostate cancer.
“Our studies overcome drawbacks of current analysis methods, such as arbitrary choices of meta-analysis parameters and inter-sample variability,” explained Saini and Leistico.
DeCET also outperformed existing tools in stratifying distinct tissue types, disease subtypes and cellular differentiation states, according to Barish.
“Epigenomic profiling is a path towards personalized medicine,” Chakravarti said.
“We expect that our study will help better understand and identify disease states, thereby facilitating future therapeutic, diagnostic and prognostic strategies,” added Song, who supervised the computational algorithmic development.
Other Northwestern co-authors included: Serdar E. Bulun, MD, the Chair and John J. Sciarra Professor of Obstetrics and Gynecology; Jian-Jun Wei, MD, the Floyd Elroy Patterson Research Professor of Pathology in the Division of Gynecologic Pathology and director of gynecologic pathology in the Department of Pathology; J. Brandon Parker, PhD, research assistant professor of Obstetrics and Gynecology in the Division of Reproductive Science in Medicine; Magdy Milad, MD, MS, the Chief and Albert B. Gerbie, MD, Professor of Obstetrics and Gynecology in the Division of Minimally Invasive Gynecologic Surgery; Poorva Sandlesh, PhD, postdoctoral fellow in the Chakravarti Laboratory; Christopher Futtner, PhD, research associate, and Yasuhiro Omura, research technician, in the Barish Laboratory; and Pritin Soni, research technician in the Chakravarti Laboratory.
Miroslav Hejna, PhD, postdoctoral fellow in the Song Laboratory at UIUC, worked with Leistico to develop and test the tensor classification algorithm.
This study was supported by National Institutes of Health grants R01HD089552, P01HD057877, P50HD098580, R01CA163336 and R01CA196270.
Madeline Stover is a physics doctoral student at the University of Illinois Urbana-Champaign studying atmospheric dynamics applied to forest conservation. She interns as a science writer for Illinois Physics, where she also co-hosts the podcast Emergence along with fellow physics graduate student Mari Cieszynski. When Stover is not doing research or communications, she enjoys hosting her local radio show, singing with her band, and cooking with friends.
Daniel Inafuku graduated from Illinois Physics with a PhD and now works as a science writer. At Illinois, he conducted scientific research in mathematical biology and mathematical physics. In addition to his research interests, Daniel is a science video media creator.
Karmela Padavic-Callaghan, Ph. D. is a science writer and an educator. She teaches college and high school physics and mathematics courses, and her writing has been published in popular science outlets such as WIRED, Scientific American, Physics World, and New Scientist. She earned a Ph. D. in Physics from UIUC in 2019 and currently lives in Brooklyn, NY.
Jamie Hendrickson is a writer and content creator in higher education communications. They earned their M.A. in Russian, East European, and Eurasian Studies from the University of Illinois Urbana-Champaign in 2021. In addition to their communications work, they are a published area studies scholar and Russian-to-English translator.
Garrett R. Williams is an Illinois Physics Ph.D. Candidate and science writer. He has been recognized as the winner of the 2020 APS History of Physics Essay Competition and as a finalist in the 2021 AAAS Science and Human Rights Essay Competition. He was also an invited author in the 2021 #BlackinPhysics Week series published by Physics Today and Physics World.
Karmela Padavic-Callaghan, Ph. D. is a science writer and an educator. She teaches college and high school physics and mathematics courses, and her writing has been published in popular science outlets such as WIRED, Scientific American, Physics World, and New Scientist. She earned a Ph. D. in Physics from UIUC in 2019 and currently lives in Brooklyn, NY.