Illinois researchers create first three-photon color-entangled W state

Mike Koon for Grainger Engineering
9/23/2019

Researchers on this project are graduate student Bin Fang and principal investigator Virginia Lorenz, associate professor of physics. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
Researchers on this project are graduate student Bin Fang and principal investigator Virginia Lorenz, associate professor of physics. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign
Researchers at the University of Illinois at Urbana-Champaign have constructed a quantum-mechanical state in which the colors of three photons are entangled with each other. The state is a special combination, called a W state, that retains some entanglement even if one of the three photons is lost, which makes it useful for quantum communication. Such entangled states also enable novel quantum applications and tests of fundamental physics.

The uniqueness of this work is that the researchers used color, or the energy of the photons, as the entangling degree of freedom, while previous work used polarization. The energy of a photon cannot be easily changed, which reduces the possibility of errors when the energy-entangled W state is propagating over a long distance. The state was verified for the first time by measuring information about the two-photon sub-systems. Their findings are published in Physical Review Letters.
“People have created polarization-entangled W states before,” noted Bin Fang, the graduate student on the project. “However, this is the first discrete energy-entangled W state and the first three-photon entangled state created in optical fiber.”
To create the state, the researchers shine a laser into a glass fiber. Through a process called spontaneous four-wave mixing, four laser photons interact with the fiber and are annihilated to create two pairs of photons at different colors (for example, two pairs of red and green photons). These four photons are used to construct the 3-photon W state. One of them is detected to be green, leaving the other three entangled as a W state, which is comprised of all possible iterations of two red photons and a green photon at once.
What makes this research unique is the use of color, or the energy of photons, to create an energy-entangled W state. Image courtesy of Gina Lorenz and Bin Fang, University of Illinois at Urbana-Champaign
What makes this research unique is the use of color, or the energy of photons, to create an energy-entangled W state. Image courtesy of Gina Lorenz and Bin Fang, University of Illinois at Urbana-Champaign
The illustration that the researchers use is that of traffic lights.
“Like three traffic lights that always signal two stops and a go, the photons’ colors always end up being two reds and a green, but the specific combination is not set until we make a measurement – a feature of the quantum mechanical nature of photons,” said Virginia Lorenz, associate professor of physics and the principal investigator.
Compared to other types of three-particle entanglement, the W state is useful for quantum communication in that, if one of the photons is lost, the other two retain some entanglement, meaning the communication is able to continue.
"Another new aspect of this research is that we found a path to verify the state is the one we aimed for that circumvents a complicated color conversion step, " said Lorenz. "Our theorist collaborators came up with a way to fairly straightforwardly show that the W state exists.”

Recent News

  • Diversity

The Department of Physics at the University of Illinois at Urbana-Champaign strongly rejects all hateful acts of antisemitism, racism, and discrimination on campus and elsewhere. As scientists, we recognize that acts of intolerance not only create a climate of intimidation and fear, but also stifle both scientific education and scientific progress. Research consistently suggests that as diversity increases, so do productivity, creativity, and innovation in human endeavors. As a department, we are committed to supporting a diverse and inclusive community at this university. We recognize that it is our responsibility to use our privilege as scientists and academics to create and defend an environment where people of all races, religions, ethnicities, genders, and sexual orientations are treated with respect and dignity, and where their contributions are welcomed and encouraged.

  • Research

The rich complexity of turbulence—with its wide range of length and time scales—poses a major challenge to the development of predictive models based on fluid dynamics. Now, four leading physicists will co-lead an international effort to develop a statistical theory of turbulence. If successful, a statistical theory of turbulence would have broad applications, including in aeronautics, geophysics and astrophysics, medicine, and in the efficient transport of fluids through pipelines. Funded by the Simons Foundation, the research project titled “Revisiting the Turbulence Problem Using Statistical Mechanics” will bring together an international team from the US, UK, France, Austria, and Israel to apply novel techniques in non-equilibrium statistical physics to the unresolved problem. University of Illinois at Urbana-Champaign Physics Professor Nigel Goldenfeld is a lead PI on the project.

  • Events
  • Quantum Information Science

Top experts in quantum technology from around the globe will gather at the University of Chicago on Oct. 25 to discuss the future of quantum information science and strategies to build a quantum workforce.

The second annual Chicago Quantum Summit, hosted by the Chicago Quantum Exchange, will engage scientific and government leaders and the industries that will drive the applications of emerging quantum information science. Speakers include technology leaders at IBM, Intel, Boeing, Applied Materials, Toshiba Research Europe, the University of Waterloo, and the University of New South Wales, Australia, and the Quantum Economic Development Consortium.

  • Research
  • Condensed Matter Physics
  • Condensed Matter Theory

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted the fingerprint of an elusive particle: The axion—first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics. Based on predictions from Illinois Physics Professor Barry Bradlyn and Princeton Physics Professor Andrei Bernevig's group, the group of Chemical Physics Professor Claudia Felser at Max Planck in Dresden produced the charge density wave Weyl metalloid (TaSe4)2I and investigated the electrical conduction in this material under the influence of electric and magnetic fields. It was found that the electric current in this material below -11 °C is actually carried by axion particles.