Researchers demonstrate existence of new form of electronic matter

Lois Yoksoulian for the Illinois News Bureau
3/14/2018

Researchers Kitt Peterson, left, Taylor Hughes, Wladimir Benalcazar and Gaurav Bahl are the first to demonstrate a new phase of matter called quadrupole topological insulators that was recently predicted using theoretical physics.
Photo by L. Brian Stauffer
Researchers Kitt Peterson, left, Taylor Hughes, Wladimir Benalcazar and Gaurav Bahl are the first to demonstrate a new phase of matter called quadrupole topological insulators that was recently predicted using theoretical physics. Photo by L. Brian Stauffer
Researchers have produced a “human scale” demonstration of a new phase of matter called quadrupole topological insulators that was recently predicted using theoretical physics. These are the first experimental findings to validate this theory.

The researchers report their findings in the journal Nature.

The team’s work with QTIs was born out of the decade-old understanding of the properties of a class of materials called topological insulators. “TIs are electrical insulators on the inside and conductors along their boundaries, and may hold great potential for helping build low-power, robust computers and devices, all defined at the atomic scale,” said mechanical science and engineering professor and senior investigator Gaurav Bahl.

The uncommon properties of TIs make them a special form of electronic matter. “Collections of electrons can form their own phases within materials. These can be familiar solid, liquid and gas phases like water, but they can also sometimes form more unusual phases like a TI,” said co-author and physics professor Taylor Hughes.

TIs typically exist in crystalline materials and other studies confirm TI phases present in naturally occurring crystals, but there are still many theoretical predictions that need to be confirmed, Hughes said.

A single circuit board, foreground, that when joined with others forms the experimental array of the quadrupole topological insulator.

Photo by L. Brian Stauffer
A single circuit board, foreground, that when joined with others forms the experimental array of the quadrupole topological insulator. Photo by L. Brian Stauffer
One such prediction was the existence of a new type of TI having an electrical property known as a quadrupole moment. “Electrons are single particles that carry charge in a material,” said physics graduate student Wladimir Benalcazar. “We found that electrons in crystals can collectively arrange to give rise not only to charge dipole units – that is, pairings of positive and negative charges – but also high-order multipoles in which four or eight charges are brought together into a unit. The simplest member of these higher-order classes are quadrupoles in which two positive and two negative charges are coupled.”
It is not currently feasible to engineer a material atom by atom, let alone control the quadrupolar behavior of electrons. Instead, the team built a workable-scale analogue of a QTI using a material created from printed circuit boards. Each circuit board holds a square of four identical resonators – devices that absorb electromagnetic radiation at a specific frequency. The boards are arranged in a grid pattern to create the full crystal analogue.

“Each resonator behaves as an atom, and the connections between them behave as bonds between atoms,” said Kitt Peterson, the lead author and an electrical engineering graduate student. “We apply microwave radiation to the system and measure how much is absorbed by each resonator, which tells us about how electrons would behave in an analogous crystal. The more microwave radiation is absorbed by a resonator, the more likely it is to find an electron on the corresponding atom.”

The detail that makes this a QTI and not a TI is a result of the specifics of the connections between resonators, the researchers said.

“The edges of a QTI are not conductive like you would see in a typical TI,” Bahl said, “Instead only the corners are active, that is, the edges of the edges, and are analogous to the four localized point charges that would form what is known as a quadrupole moment.  Exactly as Taylor and Wladimir predicted.”

“We measured how much microwave radiation each resonator within our QTI absorbed, confirming the resonant states in a precise frequency range and located precisely in the corners,” Peterson said. “This pointed to the existence of predicted protected states that would be filled by electrons to form four corner charges.”

Those corner charges of this new phase of electronic matter may be capable of storing data for communications and computing. “That may not seem realistic using our ‘human scale’ model,” Hughes said. “However, when we think of QTIs on the atomic scale, tremendous possibilities become apparent for devices that perform computation and information processing, possibly even at scales below that we can achieve today.”   

The researchers said the agreement between experiment and prediction offered promise that scientists are beginning to understand the physics of QTIs well enough for practical use.

 “As theoretical physicists, Wladimir and I could predict the existence of this new form of matter, but no material has been found to have these properties so far,” Hughes said. “Collaborating with engineers helped turn our prediction into reality.”

The National Science Foundation and U.S. Office of Naval Research supported this study.

 

Recent News

  • Research
  • Atomic, Molecular, and Optical Physics
  • Condensed Matter Theory

A team of experimental physicists at the University of Illinois at Urbana-Champaign have made the first observation of a specific type of TI that’s induced by disorder. Professor Bryce Gadway and his graduate students Eric Meier and Alex An used atomic quantum simulation, an experimental technique employing finely tuned lasers and ultracold atoms about a billion times colder than room temperature, to mimic the physical properties of one-dimensional electronic wires with precisely tunable disorder. The system starts with trivial topology just outside the regime of a topological insulator; adding disorder nudges the system into the nontrivial topological phase.

  • Accolades
  • Condensed Matter Physics

Professor Nadya Mason has been elected a Fellow of the American Physical Society (APS) “for seminal contributions to the understanding of electronic transport in low dimensional conductors, mesoscopic superconducting systems, and topological quantum materials.”

Mason is an experimental condensed matter physicist who has earned a reputation for her deep-sighted and thorough lines of attack on the most pressing problems in strongly correlated nanoscale physics.

  • Alumni News
  • In the Media
  • Biological Physics

These days, Cissé, a newly minted American citizen, is breaking paradigms instead of electronics. He and colleagues are making movies using super-resolution microscopes to learn how genes are turned on. Researchers have spent decades studying this fundamental question.

Cissé thinks physics can help biologists better understand and predict the process of turning genes on, which involves copying genetic instructions from DNA into RNA. His work describes how and when proteins congregate to instigate this process, which keeps cells functioning properly throughout life.

  • Outreach
  • Quantum Information Science

Two University of Illinois faculty members are at the White House in Washington, D.C., today, attending the Advancing American Leadership in QIS Summit.

Quantum Information Science (QIS) and Technology has emerged over the last decade as one of the hottest topics in physics. Researchers collaborating across physics, engineering, and computer science have shown that quantum mechanics—one of the most successful theories of physics that explains nature from the scale of tiny atoms to massive neutron stars—can be a powerful platform for information processing and technologies that will revolutionize security, communication, and computing.